v

SymTorrent and GridTorrent: Developing
BitTorrent Clients on the Symbian Platform

Imre Kelényi
Budapest University of Technology and Economigse.kelenyi@aut.bme.hu

Bertalan Forstner
Budapest University of Technology and Economiiestalan.forstner@aut.bme.hu

Abstract: This chapter aims to give an insight intohow a complex peer-to-
peer (P2P) application can be created on Symbian Q$ing C++. It focuses
on BitTorent, which is one of today’s most importah P2P protocols. In
addition to giving a short overview of the main conepts behind BitTorrent,
two actual Symbian OS clients are introduced. SymTroent and GridTorrent
are the only Symbian OS BitTorrent clients to dateThrough code snippets
from these applications, many programming topics a covered, such as
networking, sockets, and using the HTTP framework bSymbian OS. Since
we do not go into the actual protocol implementatin, but instead focus on
the more general concepts, most of the topics coeel here can be reused in
any application using networking.

Keyword: BitTorrent; SymTorrent; GridTorrent

Contents

7.1 Introduction

7.2 SymTorrent

7.3 GridTorrent

7.4 Developing a BitTorrent Client
7.4.1 Creating the Network Manager
7.4.2 Network Connections
7.4.3 Listening for Incoming Connections
7.4.4 Sending Data Via Sockets
7.4.5 Receiving Data from Sockets
7.4.6 The Socket Base Class
7.4.7 The Peer Connection
7.4.8 The Tracker Connection
7.4.9 The Torrent
7.4.10 The Torrent Manager
7.4.11 Differences in GridTorrent

Mobile Peer to Peer (P2P) Edited by Frank H.P. Fitzek and Hassan Charaf
© 2009 John Wiley & Sons, Ltd

96 SymTorrent AND GridTorrent: DEVELOPING BitTorreGLIENTS ON THE SYMBIAN PLATFORM

7.5 Conclusion
References

7.1 Introduction

At the point of writing, the BitTorrent protocol Bne of the most popular alternative file
transfer technologies on the Internet. In conttastentralized solutions, such as HTTP or
FTP, the BitTorrent protocol aims to transfer tretadin a completely distributed way by
dividing files into smaller pieces that can be iested from several locations. The other
sources are BitTorrent users who have already dmadeld all or part of the file. In return,
the user’s BitTorrent client may upload part ofila that has been previously downloaded.
The key to scalable distribution is cooperationo3éwho get a file use their own upload
capacity to give the file to others at the sameetimihe greater the number of users
downloading, the greater is the number of usersagihg as well. This is the essence of
BitTorrent, but more details are given in the ngadtion.

Having this technology on mobile phones was noagbyossible earlier for several
reasons. BitTorrent requires maintaining severaWwork connections simultaneously and
accessing multiple files at a time. However, witte tintroduction of powerful mobile
hardware and open software platforms, which provide development tools and enable
third-party applications to be created, the time bhame to bring peer-to-peer (P2P) file-
sharing to mobile phones.

This chapter discusses two implementations of ddrent client on Symbian OS,
SymTorrent and GridTorrent. Both projects sharestmae code base.

SymTorrent was the first BitTorrent client for migphones. It was released in 2006
as an open-source project, and has since been daded more than half a million times.
SymTorrent uses the standard BitTorrent protoca so allows the downloading of any
content shared with BitTorrent from the Internethie same way as a desktop client.

GridTorrent is a specialization of SymTorrent tladiows the users to form local
clusters (‘mini-networks’ or ‘grids’, hence the n@mand download files in a cooperative
way, saving both bandwidth and energy.

The aim of this chapter is to give an insight intav complex P2P applications can be
created on Symbian OS. Since SymTorrent and Grighbrare quite large projects with
thousands of lines of code and organized into s¢MVdraries, we cannot have a full
coverage of the source code, but instead focus@michitecture, the key concepts, and the
difficulties we faced during the development. Thisok is about programming, so, after
giving an overview on the projects and how BitTatrevorks, we jump right into writing
code. We also discuss network interfaces, sockets,Symbian’s HTTP framework, so this
chapter will be of interest to any developers ieséed in networking-based application and
not just peer to peer.

BitTorrent is a peer-to-peer file-sharing prototiwht was designed by Bram Cohen
[1, 2]. After releasing the first fully functionalersion in 2003, it became an immediate
success, and by 2004 the client software had beemldaded more than 10 million times.
The key concepts are dividing the data into smigitgs and transferring these between the
participants in both directions. This means thdtemw one of the users has downloaded a
piece, it can immediately start uploading it to #ueo user. The pieces are not downloaded
from a central source, but from the users themsel@¢ course, an initial source is required,
but, after enough users have started downloadhg,number of requests to the original
source reduces, to the point where it becomes dathinBitTorrent also features an intuitive
tit-for-tat mechanism that prevents free ridingwadoading but never uploading) by giving

97

more bandwidth to those peers that upload datdafheer rate. Both the content provider and
the user benefit from using BitTorrent, since tbad on the servers is much lower, while the
transfer speeds can be higher than with a cenalales BitTorrent provides excellent
redundancy, since it distributes data networkwinheiting the problems caused by a central
server going down.

In general, BitTorrent can be used to replace amnralized file transfer protocol,
such as the FTP and HTTP protocols built into beraisbut at the moment BitTorrent clients
are not as widespread.

To be able to understand the following parts o$ tthapter and the architecture of
SymTorrent and GridTorrent, you must get familiaithwthe basics of the BitTorrent
protocol.

When we refer to gorrent, we mean the file or files to be downloaded orretia
BitTorrent allows a single file or multiple filesganized into directories (similar to a zip file)
to be shared. After the creator of the torrent (thial source of the data) has selected the
files to be shared, there is no way of changingnthiérom this point in time, the torrent is a
closed entity, and files cannot be added or remoMegvever, some BitTorrent clients allow
only selected files to be downloaded from a mudtitiorrent. We often refer to the peers
downloading and sharing a particular torrent asvarm. Everybody who is in a swarm
exchanges the pieces of a particular torrent.

Tracker

Peer A IP address

Peer B IP address
Peer CIP address
Peer A
o —_—
5 —
—
BJ=
=l

orrent T) ‘A ;\
000006

To gain a better understanding of how data transéeks in BitTorrent, we will show
a snapshot of the process of transferring a totvetween three peers. Figure 7.1 illustrates
an example scenario. Peers are marked with leitdBs and C. The bars under the peer icons
show the status of the torrent. In this example, tdrrent consists of five pieces. Real-life
torrents usually have several hundreds or everstras of pieces. The pieces are numbered

Torrent

Figure 7.1 Transferring a torrent between three peers

98 SymTorrent AND GridTorrent: DEVELOPING BitTorreGLIENTS ON THE SYMBIAN PLATFORM

from 1 to 5. Black filled circles denote piecestthave been downloaded, while grey circles
mark the pieces that are being downloaded. As yousee, one of the peers, peer C, has
already downloaded the whole torrent and is acdmgseeder, a peer that only uploads. Peer
A has one piece downloaded (piece 1) and is dowlirigathree other pieces: one from peer
B and two from peer C. Peer B has also finishedmeee and is downloading two pieces,
one from each of the other peers. As time progseggers A and B will have more and more
pieces downloaded, which they can upload to eaunér otaking the load from peer C. This is
just a simple example with three peers, but theesarchanism also works with thousands of
clients. The inclusion of the tracker in the pietis to emphasize that it does not participate
in the data transfer. The tracker does not havetdhent, and it only hosts the list of
addresses of peers in the swarm.

Some of the most important terms of BitTorrentasdollows:

» Tracker. A central server whose task is to coordinate trergthat are participating in a
swarm. The tracker itself does not share any diatmly maintains the list of peers that
are downloading and sharing the torrent. Everyetdrmust have a tracker. Each time a
peer starts downloading a torrent, it connectfi¢éattacker, which provides it with the list
of peers in the swarm. This procedure is refermeégannouncing, for the peer also
announces its own address to the tracker. Thedraska fundamental component of
BitTorrent: if it is not available, new peers catnoin the swarm. The peers
communicate with the tracker via standard HTTP G&juests. It should be noted that a
tracker can host several torrents, and a torreoften registered in several trackers in
order to achieve some level of redundancy. Althotigh newest version of BitTorrent
supports trackerless torrents [3], which store and retrieve peer adsgssfrom a
distributed hash table (DHT), this is mainly usedlyaf the tracker is unavailable. Hence,
in this chapter we focus on the standard trackietiso only.

« Torrent file. A binary* file that contains all the required informationdownload a torrent
(join the swarm). It contains a link (a URL) to thacker and the list of files in the
torrent, along with the hash values of the pieded® torrent. These SHA-1 hash values
allow the integrity of the downloaded data to bedated. Other metadata, such as the
creator of the torrent, can also be added whertidirent file is created. As mentioned
earlier, a torrent cannot be changed after it leenlzreated. In practice, this is achieved
by using the hash of the torrent file as the ID tfog torrent. This ID is used in several
protocol messages, and thus it cannot be changeck 8hanging the torrent file would
change its ID as well, this is not possible witheiglating the protocol. It is important to
understand that therrent file is not synonymous with th@rrent. The former is just a
reference to the swarm, while the latter is therawisself.

» Peers (leechers and seeders). Users (computer, mobile phones, etc.) runningnatance
of a BitTorrent client. Peers are the source ofdand they are also the downloaders. If
there are no peers available, the torrent cannatowenloaded. The protocol that peers
use to communicate with each other is referredstéhapeer wire. It defines a set of
messages, such as REQUEST (requests a block eta@)mr PIECE (sends a block of a
piece). The peers are often divided into two catego
— Leechers. Peers that have not downloaded the full torrent ydney are both

uploading and downloading.

— Seeders. Peers that have the full torrent. They are notrdoading any more, but
keep uploading the torrent. When the torrent ister@ an initial seeder is required to
host the shared data until it is spread in the odtwSeeders have a positive effect on
the overall available bandwidth of the torrent.

! The data in torrent files is in a format refertechsbencode.

99

To summarize how the protocol works, here are thpssfor creating a new torrent and
starting to share it:

1. The files that will be shared are selected.

2. Using a special application, tharent maker, the torrent file, is created. The files that are
shared and the address of the tracker must be.given

3. The torrent is registered in the tracker whose egklwas encoded into the torrent file.

4. The initial seeder starts sharing the torrent byoamcing to the tracker.

After the initial source has started sharing theetat, any peer can join the swarm, provided
it possesses the torrent file. Without the torfdat theoretically, it is not possible to join a
torrent, since it is the only source from where tilreent’s ID and the address of the tracker
can be obtained. After the peer has announcedetdréitcker and received the list of some
other peers, it can start establishing connectiotisem and transfer pieces of the torrent.

7.2 SymTorrent

SymTorrent is a complete BitTorrent client for SyambOS. Currently, it is released for the
S60 3rd edition platform, but most of the codelafprm independent, and only the Ul layer
is specific to S60. SymTorrent features a multivieser interface, allows multiple torrents to
be downloaded at a time, and can resume torret@iseaditing the application. At the point of
writing, torrents must be added manually in Sym@&otr(via the ‘Add torrent’ dialog).
Compared with a PC client, SymTorrent lacks somtéhefmore advanced features, such as
peer exchange, NAT traversal, scheduling, etc. HWewein terms of downloading,
SymTorrent performs reasonably well. The sourceeagsdreely available under the terms of
the GNU General Public License at http://symtoraaritbme.hu.

—3
H
T

3G

~
a—_—i" SymTorrent

Il dimitris-collages-... &
3,41% PAUSED

Torrents »

wired-creative-co...
2.18% Conn: 6, 29,27kB/s

options it

Figure 7.2 A screenshot of the main view of SymTorrent, simgyvwo loaded torrents: the first is
paused, the second is being downloaded from sisspee

SymTorrent was written entirely in Symbiar-€using the S60 3rd edition SDK MR.
It does not use the recently introduced Open+@&/@amework, nor any other add-on
libraries. In terms of the architecture, when tingt foublic version was released, SymTorrent
consisted of a single executable only. Later, asagiplication was developed and the source
code became larger and larger, the code was dividedseveral components. After putting
the Ul layer into a separate DLL, we also starteddohg the ‘engine’ part into several
libraries that can be maintained more easily. As thoint, SymTorrent consists of the
following subprojects:

100 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

* SymTorrent. The name might be a bit misleading, but this ik dne Ul-dependent part
of SymTorrent. This project is responsible for tirgathe different Ul views, initializing
the engine, and processing the user inputs. Padlgtithis project creates the executable
that starts when the application is selected irpti@ne’s menu.

* SymTorrentEngine. This is the essence of SymTorrent that does alhtin-Ul-dependent
tasks. The engine is responsible for implementimg BitTorrent protocol, including
parsing torrent files, announcing to the trackewd astablishing peer-wire session with
the other peers. Technically, SymTorrentEngine iBL&. Any third-party application
can use it, provided that it implements a couplprefiefined interfaces.

» LibBencode. A DLL implementing BitTorrent bencode decoding amtoding. Bencode
is the binary format of torrent files and the trackequests.

* KiNetwork. Since SymTorrent depends heavily on networking,dseided to create a
separate DLL that is responsible for almost allvoeking tasks, such as initializing the
network interfaces, handling sockets, and acceptiogming connections. KiNetwork
provides base classes for objects using UDP, TCRven Bluetooth sockets. These
classes make Symbian socket programming much das@oviding simple methods for
writing to the socket and receiving data. KiNetwadn also be used to initialize the
network interface of HTTP sessions.

* KilLogger. A simple set of classes that allow the creatiod mranipulation of log files.
Generally, log files are used for debugging purpoddany parts of the code of
SymTorrent contain logging calls, which write defing information into a text file.

 SymTlracker. Since SymTorrent was started as a research proyeet wanted to
experiment with several scenarios, including hadrsgparate tracker on the phone itself.
SymTracker is a very simple tracker that can hdstaf peers and provide them to the
announcing peers. However, it also has a builbment maker function, which allows
torrents to be created and hosted in a few stephemlevice. Since SymTracker is an
optional component and not a fundamental part e Byrent, it can be ignored if you
are not interested in hosting a separate trackénedevice.

When you build SymTorrent using the SDK’s developtmimols, all of these projects are

compiled, linked, and, in the final phase, if youiltd for the device, combined into an

installable SIS file. In this chapter we mainly @igcon certain parts of SymTorrentEngine and
KiNetwork.

7.3 GridTorrent

GridTorrent uses the same engine as SymTorrent.n€hest versions of SymTorrent and
GridTorrent both build on top of SymTorrentEngivehich also contains the application
logic of GridTorrent. The differences are only letmain Ul projects. GridTorrent has a
different download status view, with statistics the local connections. It also shows a
special status bar that displays which pieces baea downloaded from the local network.

101

; GridTorrent .
wal” [status [0
Size: 6.8 MB
Downloaded: 18.57%
SHARING

Upload: 0.00 kB/s

Conn: 0(0) Local: 1(1)

(11110 N | N

Figure 7.3 A screenshot from GridTorrent, showing the staftius torrent being transferred from one
local peer

Otherwise, GridTorrent is very similar to SymTorteht is a BitTorrent client that
enables local cooperation in downloading torrehkgs means that users can form small local
networks (clusters, grids) that are connected vieBAW or Bluetooth and cooperate to
download torrents more efficiently. The peers ie thcal network download pieces both
from each other and from peers on the Internet. Mdoading via the local links can be faster
and more efficient; thus, downloading pieces framal peers is preferred. The locally
connected peers share extra information on theiustwith each other. The goal is to
minimize data traffic with peers connected overltrg-range links and obtain as much data
as possible from the local cluster. This is howpmrating GridTorrent peers conserve both
energy and data traffic.

The topology of a network with GridTorrent peersiligstrated in Figure 7.4. The
peers using GridTorrent, which are marked with phene icon, are connected over short-
range links, typically over Bluetooth. They formetlocal cluster, which is marked with a
cloud. Besides the locally connected peers, Grightrclients also establish connections

with peers on the Internet, over a long-range ngkwderface, which can be HSDPA, GRPS,
or even WLAN.

102 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

Long range

—————— Short range

S|

Standard BitTorrent peer

Local cluster

Figure 7.4 Topology of a GridTorrent-based network

GridTorrent can be used as a standard BitTorréentcland torrents can be added and
downloaded from the Internet without using anylhef added features. However, there are a
couple of new options in the menus that enable westablish local connections between the
devices. By selecting ‘Start local listening’, aople starts listening via the selected network
interface, which can be Bluetooth or WLAN. If we ntado make a connection to a local
device that is already listening, this can be dbwpeselecting the ‘Add local peer’ option.
Here, the IP address of the device can be givennmase of Bluetooth, a device discovery
dialog is shown. After the local links have beetabbshed, the devices download pieces
from the Internet and from each other in a cooperavay. Pieces that are available locally
are downloaded from the local peers.

At the point of writing, GridTorrent has not beexleased to the public, but we are
planning to make it open source. Generally speak@wdTorrent is currently a research
project, but we think that any developer can beériedim our experiments with creating the
application.

7.4 Developing a BitTorrent Client

Designing and implementing a P2P client on Symb@® is a demanding task. The
application logic is complex and the programmer trhes familiar with many advanced
features of the platform. This chapter aims to giga some tips, ideas, and code fragments
that will help you take the first steps. In accorda with the topic of this book, we focus on
the networking aspects of the application. We db gm into the implementation of the
BitTorrent protocol, and most of the topics covelede can be reused in any application
using networking. The code snippets are basedeargine of SymTorrent and GridTorrent;
however, they are not simply copied and pasted.cDde classes are greatly simplified. For
example, we have removed parts of the code thatamsidered less significant, and, to
simplify the code, we have left oNewL() andNewLC() methods and some other definitions.
Nevertheless, you can always refer to the full epaurce version of SymTorrent and
GridTorrent [4]. We try to point out the projectswhich you can find the associated source

103

files. From now on we will use SymTorrent when weafer to the complete mobile
application. The header files for the Symbian-badadses used can be found by searching
the help file of the SDK. All of the source codetlms chapter was tested with the S60 SDK
3rd edition MR (Maintenance Release).

Figure 7.5 shows the simplified class diagram @f ¢éimgine of SymTorrent. It does
not include the user interface classes, and selval-level classes are also omitted.

CSocketBase | CSTTorrentManager |
» 0

CSTTorrent SEEE CSTTrackerConnection

| CSTPeerConnection g..1 CSTPeer

Figure 7.5 The simplified class diagram of the engine of Spmént

7.4.1 Creating the Network Manager

Before moving on to the BitTorrent-related classes, are going to implement a simple
networking framework that makes network and sogkegramming simpler. This is the
lowest level of the application, where network cections are created and sockets are read
and written; thus, these code snippets can bezedilin almost any application that uses
networking. The full source code can be found i KiNetwork subproject of SymTorrent.
Figurre 7.6 shows the classes of the networkingésaork that we are going to implement.

I>| CActive

CNetworkManager <<~ - - =~ - - -

CSocketBase

| CSocketWriterI I CSocketReader

Figure 7.6 The simplified class diagram of the networkingday

The network manager is responsible for starting maghtaining the active network
connection, providing a socket server session mtehing for incoming connections. These
are implemented by a single class referred tonasworkManager . This is a singleton class,
which means that only one instance of it can eaisany time, and this instance can be
accessed globally. Traditionally, singletons argplemented using static class members;
however, in Symbian OS, it is not preferred to gkxal writable static data in DLLs [5].
Instead, thread-local storage (TLS) is used. TL& ssngle machine word of static memory

104 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

whose scope is the thread in which the code ofCthe is running. In a DLL that uses
multiple singleton classes, the TLS has to be @etoime container class that manages the
singletons. In this example, however, we are gaingse only one singleton class per DLL.
Thus, the TLS can be safely set to the addredsi®singleton. The declaration of the class is
as follows:

class CNetworkManager : public CBase

{

public:
static CNetworkManager* Instance(); // Singleton access
static void InitializeL(); // Singleton initializ ation

static void Free(); // Singleton cleenaup

~CNetworkManager();
void StartNetworkConnectionL (
MNetworkConnectionStarterObserver* aObserver = NULL);
TBool IsNetworkConnectionStarted() { return iNetw orkConnectionStarted; }
void StartListeningL(TUint aPort, MSocketListener Observer* aObsever);

void StopListening();

RSocketServ& SocketServ() { return iSocketServer;
RConnection& NetworkConnection() { return iConnec tion; }

private:
CNetworkManager() : CCoeStatic(KUidNetworkManager Singleton) {}
void ConstructL();
void GetlapNamesAndldsL(RArray<TUint32>& alds, CD esC1l6Array& aNames);
TUint32 QuerylapldL();

private:
TBool iNetworkConnectionStarted;
RConnection iConnection;
RSocketServ iSocketServer;
CSocketListener* iSocketListener;
TInt iReferenceCount;

Iy

Before any access can be madenrietworkManager , the static methouhitializeL() must

be called. It creates the singleton instance ifsiinot initialized yet, and increments a
reference counter, which is used during clean-upngure that the object is not cleaned up
while it is still in use:

void CNetworkManager::InitializeL ()

{
/I Get TLS
CNetworkManager* instance = (CKiLogManager*)DII:: Tls();

if (instance == 0)
{
instance = new (ELeave) CNetworkManager();
CleanupsStack::PushL (instance);
instance->ConstructL();
CleanupsStack::Pop();

DIl::SetTls(instance); // Set TLS to the sing leton
}
instance->iReferenceCount++;
}
Every call toinitializeL() must be paired with a call to the static methag() , which

cleans up the object. Reference counting enabkesitigleton to be used in a shared DLL.
The reference counter is decreased each #imw) is called. When the counter reaches

105

zero, the singleton is cleaned up. For debug peyaspanic is raised if the singleton is freed
up too many times:

void CNetworkManager::Free()
CNetworkManager* instance = (CNetworkManager*)DII = Tls();
if (instance)
instance->iReferenceCount--;
if (instance->iReferenceCount == 0)

{
delete (CNetworkManager*)DII::Tls();
DIl::SetTIs(NULL);
}
}

else
User::Panic(KLitNetworkManagerPanic, ENetworkMa nagerFreedUpTooManyTimes);
}

Accessing the singleton is performed by calling skegicinstance() = method, which does
nothing else but return the content of the TLS:

CNetworkManager* CNetworkManager::Instance()

{
return (CNetworkManager*)DII::Tls();
}

To simplify accessing the network manager, we @etiire inline functiometmMgr()

inline CNetworkManager* NetMgr()
{

return CNetworkManager::Instance();

}

The second-phase constructocoktworkManager opens a session to the socket server:

void CNetworkManager::ConstructL()

User::LeavelfError(iSocketServer.Connect(255));

}

The destructor releases the owned resources, naheelsocket server handle, the network
connection handle, and the socket listener, iag been initialized:

CNetworkManager::~CNetworkManager()

iSocketServer.Close();
iConnection.Close();
delete iSocketListener;

}

7.4.2 Network Connections

We are going to create a P2P application, whichnsélaat our program needs access to the
Internet. To do so, we must establish a networkeotion. By network connection we mean
the actual network interface, for example WLAN dPES. By default, the framework pops
up a network connection selection dialog when trewark is first accessed, and
automatically starts the selected network connectitbwever, this pop-up can sometimes be
annoying, especially if it pops up multiple timés.order to provide a better user experience,

106 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

the network selection dialog can be avoided byirgetip the desired connection directly.
Another plus is that, by directly programming tha@gection, it can be saved and reloaded
after the application restarts. Under Symbian @Sheetwork connection is associated with
an access point. An access point is an entry irctimemunications database. It has several
fields, including a name and a unique ID. To stacbnnection, we must first obtain its ID. In
the following example we are going to query allikakde access points from the framework
and display them in a dialog for the user. On t6@ Blatform, the access point engine can
also be used via theapsSelect class to access the available access points. Howevthis
example we are going to extract the access poirgstly from the communications database.
The full process of querying the access point atadtisg the network connection is
illustrated in Figure 7.7

Get IAP names '
Query user for
preferred I1AP

Failed to start Canceled
network connection

L

Got AP

[Open network conneclion]

Failed >

Network connection opened

H

Yes

Notify observer | No

Network connection started .\\

!

Is observer set?

D

Figure 7.7 Activity diagram of starting the network conneatio

The first step is to get the names and IDs of tfalable access points. To do so, we
need to access the Internet access point (AP t@iblhe communications database and get
all of its records. The following method extradis taccess point fields into the passed arrays:

void CNetworkManager::GetlapNamesAndldsL(RArray<TUi nt32>& alds,
CDesC16Array& aNames)

{

/I Open COMM database

CCommsDatabase* commsDb = CCommsDatabase::NewL();
CleanupStack::PushL(commsDb);

/I Get the table with the access points
CCommsDbTableView* view = commsDb->OpenTableLC(T PtrC(IAP));

TInt res = view->GotoFirstRecord();

/I Read all the access points
while (res != KErrNotFound)

User::LeavelfError(res);

TBuf<KCommsDbSvrMaxFieldLength> name;
TUint32 id;
view->ReadTextL(TPtrC(COMMDB_NAME), name);
view->ReadUintL(TPtrC(COMMDB_ID), id);

alds.Insert(id, 0);
aNames.|InsertL(0, name);

res = view->GotoNextRecord();

}

CleanupStack::PopAndDestroy(2, commsDb); // view,
}

107

commsDb

With the name and ID of the access points in harare able to display a dialog for the

user.QuerylapldL()

creates a pop-up list dialog, populates it with dlscess points, displays

it to the user, and returns the ID of the seledtech. This dialog is very similar to the one
that is automatically displayed by the OS, buadkis the small icons:

TUint32 CNetworkManager::QuerylapldL()
{
RArray<TUint32> idArray;
CleanupClosePushL(idArray);
CDesCArrayFlat* namesArray = new (ELeave) CDesCAr
CleanupStack::PushL(namesArray);

/I Get access points
GetlapNamesAndldsL(idArray, *namesArray);

/I Create the popup list

CEikTextListBox* list = new (ELeave) CAknSinglePo

CleanupsStack::PushL(list);

CAknPopupList* popupList = CAknPopupList::NewL(li
R_AVKON_SOFTKEYS_OK_CANCEL,AknPopupLayouts::EMe

CleanupStack::PushL(popuplList);

/I Initialize the listbox.

list->ConstructL(popupList, CEikListBox::ELeftDow

list->CreateScrollBarFrameL(ETrue);

list->ScrollBarFrame()->SetScrollBarVisibilityL(C
CEi

/I Set list items

CTextListBoxModel* model = list->Model();
model->SetltemTextArray(namesArray);
model->SetOwnershipType(ELbmDoesNotOwnltemArray);

/I Set title
popupList->SetTitleL(_L("Select connection™));

/I Show popup list
TBool changed = popupList->ExecuteLD(); // shows
CleanupsStack::Pop(); // popuplist

Tint iapld = 0;
if (changed)
iapld = (TUint32)idArray[list->CurrentltemIndex

CleanupStack::PopAndDestroy(3, idArray); // list,
return iapld;

}

rayFlat(5);

pupMenuStyleListBox;

St,
nuWindow);

ninViewRect);

EikScrollBarFrame::EOff,
kScrollBarFrame::EAuto);

the dialog

Q0L

namesArray, idArray

The next step is to define the method that actusliyts the network connection. Like many
networking function calls, starting the connectisan asynchronous process. Thus, it should

108 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

be called by an active object [6] so that the tirefithe application is not blocked. In this
example, however, we use a synchronowasForRequest() call to make the code more
readable. Nevertheless, we show an observer ¢tlassduld be used if we implemented the
asynchronous version. The caller can pass an ingpi&ation of the observer whose
NetworkConnectionStartedL() method is called when starting of the network @mtion is
completed or fails:

class MNetworkConnectionStarterObserver

{

public:

virtual void NetworkConnectionStartedL(TInt aResu It,
RConnection& aConnection) = 0;

h

The StartNetworkConnectionL () method callQuerylapldL() to obtain the access point
ID from the user. The network connection is enclgted by theRConnection class, which
must be opened before it can be used. Startingdheection is done by configuring the
fields of a TCommbDbConnPref object with the acquired access point and pasgirg the
start() method of the connection. Since we use a synchisonaitForRequest() call, the
thread is blocked at this point until the connattias been started or the operation fails. We
can obtain the result from the pass@dquestStatus object. Finally, we signal the observer
if it is available:

void CNetworkManager::StartNetworkConnectionL(
MNetworkConnectionStarterObserver* aObserver)

{
TUint32 iapld = QuerylapldL(); / Query the acces s point ID
if (iapld)
{
TCommDbConnPref prefs;
prefs.Setlapld(iapld);
prefs.SetDirection(ECommDbConnectionDirectionOu tgoing);
prefs.SetDialogPreference(ECommbDbDialogPrefDoNo tPrompt);

prefs.SetBearerSet(KCommbDbBearerUnknown);
User::LeavelfError(iConnection.Open(iSocketServ er));

TRequestStatus status;
iConnection.Start(prefs, status); // Start the connection
User::WaitForRequest(status); // ActiveObject s hould be used

if (status.Int() == KErrNone)
iNetworkConnectionStarted = ETrue;

if (aObserver)
aObserver->NetworkConnectionStartedL(status.! nt(), iConnection);
}
}

After the network connection has been started,ait be used to initialize sockets, host
resolvers, or HTTP sessions. All of these classe® la method that can be used to attach an
RConnection instance that encapsulates the started networkection.

7.4.3 Listening for Incoming Connections

In BitTorrent, peers communicate with each otheeroWCP/IP connections. To accept
incoming connections, we need to start listeningaoport. If an incoming connection is

accepted on the given port, the framework givea gsnfigured socket that can be used to
communicate with the other party. By its naturstelning is an asynchronous process.
Symbian OS allows us to do listening synchronousiy, it does not make too much sense,

109

since this would block the entire thread. Hence,slvew you how to implement listening
asynchronously by using active objects.

First of all, we create a callback method encapedlain an observer class
MSocketListenerObserver . This class is responsible for notifying the cliamhen an
incoming connection is accepted:

class MSocketListenerObserver

{
public:
/I Called when an incoming connection is accepted , the ownership of the socket
/I is passed to the called object.
virtual void AcceptSocketL(RSocket& aSocket) = 0;

i

We implement listening in the active obje&docketListener . Listening is started by calling
StartListening() and specifying a port and an observer. The prifiglds of the class
include two socket handlesSocketListener is the socket that actively listens and
iBlankSocket is the socket that encapsulates the next inconongexction:

class CSocketListener : public CActive

{

public:
CSocketListener() : CActive(EPriorityStandard) {}
~CSocketListener();

TInt StartListening(TUint aPort, MSocketListenerO bserver* aObserver);
void StopListening();

private: // from CActive
void RunL();
void RunError();
void DoCancel();

private:
MSocketListenerObserver* iObserver;
RSocket iSocketListener;
RSocket iBlankSocket;

Iy

StartListening() begins with checking whether the object has betivaded. Before we
can start listening, we must make sure that thevaré&t connection has been started. If the
connection is offline, then we start it through tetwork manager. Since we implemented
StartNetworkConnectionL () as a synchronous method, we do not need to pasissanver
and wait for the result.

To start listening, the listening socket must bersgal first. It is important to pass the
started network connection as the fourth parameftehe open() method. Otherwise, the
automatic access point selection dialog is disglayéen we must specify the port on which
the socket listens by binding an arbitrary netwadklress with the selected port to the socket.
Calling Listen() starts listening, but incoming connections areatmepted untihccept()
is called.Accept() is an asynchronous operation. Its first paramisténe blank socket that
will be attached to the incoming connection. Thgnakronous operation is completed (and
the active object event handler metirhL() is executed) when an incoming connection
arrives:

Tint CSocketListener::StartListening(TUint aPort,
MSocketListenerObserver* aObserver)

{
if (IsActive()) User::Panic(...);
iObserver = aObserver;

if (INetMgr()->IsNetworkConnectionStarted())
{

110 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

TRAPD(err, NetMgr()->StartNetworkConnectionL())
if (err I= KErrNone)

return err;
}
TInt err = iSocketListener.Open(NetMgr()->SocketS erv(), KAflnet,
KSockStream, KProtocollnetTcp, NetMgr()->Networ kConnection()));

if (err I= KErrNone)
return err;

TlnetAddr addr;
addr.SetPort(aPort);

err = iSocketListener.Bind(addr);
if (err I= KErrNone)
return err;

err = iSocketListener.Listen(5);
if (err I= KErrNone)
return err;

iBlankSocket.Close();
iBlankSocket.Open(NetMgr()->SocketServ());
iSocketListener.Accept(iBlankSocket, iStatus);
SetActive();

return KErrNone;

}

We also provide a method to stop the listening @gecTwo calls are performed: the active
object and the asynchrononscept() request are cancelled by calliggncel() , and the

resources of the listening socket are releasedabiyng theClose() method of the socket
handle:

void CSocketListener::StopListening()

Cancel();
iSocketListener.Close();

}

The last method we need to implement in the sddtener class is the event handler method
of the active objectRunL() is called when theaccept() request is completed. The
completion of the request does not necessarily ntleainit has been successful. Thus, we
need to check the result by accessingiskeeus member variable of the active object. If it
is set toKErmrNone , then accepting an incoming connection has beewessful, and
iBlankSocket is attached to it. In this case, we pass the sdok#he observer. It should be
noted that the observer must take the ownershipeohew socket. After passing the socket, a
new Accept() request can be issued to continue listening. iBhéone by reinitializing the
blank socket, issuing the request, and settingotiject to the active state. If thecept()
request fails, we stop the listening process:

void CSocketListener::RunL()
{
if (iIStatus.Int() == KErrNone)

if (iObserver)
iObserver->AcceptSocketL (iBlankSocket);
else
iBlankSocket.Close();

/I Initialize a new blank socket

iBlankSocket = RSocket();
iBlankSocket.Open(NetMgr()->SocketServ());
iSocketListener.Accept(iBlankSocket, iStatus);
SetActive();

}

111

else
StopListening();

We also need to implemenbcCancel() , the method that cancels the asynchronous request.
In our case, it calls theancelAll() method of the listener socket, which cancels tizvea
Accept() request:

void CSocketListener::DoCancel()

iSocketListener.CancelAll();

}

The destructor cancels the active object and clostsowned socket handles:

CSocketListener::~CSocketListener()

Cancel();
iBlankSocket.Close();
iSocketListener.Close();

}

Now that we have definedSocketListener , we should also add the listening methods to
the network manager. In this way, listening foramgng connections can be started by
calling a method of the easily accessible singletetwork manager. Listening is started by
calling StartListeningL() , wWhich creates a new instance of the socket kstand starts
listening. Stopping listening is performed by aadliStopListeningL() , which deletes the
socket listener instance:

void CNetworkManager::StartListeningL(TUint aPort,
MSocketListenerObserver* aObserver)

{
if (iISocketListener == NULL)
iSocketListener = new (ELeave) CSocketListener;

if (liSocketListener->IsActive())
User::LeavelfError(iSocketListener->StartListen ingL(aPort, aObserver));

}

void CNetworkManager::StopListening()

delete iSocketListener;
iSocketListener = NULL;

}

7.4.4 Sending Data Via Sockets

Communicating with the peers is performed via stekeeading and writing sockets must be
handled asynchronously so that an active operalo@s not block the entire application. We
are going to create a generic socket class thaipsantates a socket handle and can be used to
write to the socket and get notifications when dateeceived from the connected peer. This
class is referred to asocket base (CSocketBase). Since both sending and receiving are
handled asynchronously, both of these functionsuireq separate active objects
(CSocketwriter ~ andCSocketReader).

The first class we are going to implementCSocketwriter , an active object that
encapsulates an asynchronous write request toottketsserver. The first-phase constructor
takes the owner socket class as a referedgecketBase); this class will be implemented
later. The socket writer does not open a sockehake any connections. Its purpose is to
send data via an already initialized and connestadket. The socket writer can only have
one active write operation. This means that, ifwant to send data when there is already an

112 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

active request, then we must store the data irfffartand send it later. This way, an arbitrary
number of requests can be issued to the sockeerywand the write operations will be
performed in a sequential order:

class CSocketWriter : public CActive

public:
CSocketWriter(CSocketBase& aSocketBase)
: CActive(EPriorityStandard),
iSocket(aSocketBase.Socket()), iSocketBase(aSo cketBase) {}

void ConstructL();
~CSocketWriter();
void WriteL(const TDesC8& aBuf);

private:
void IssueWrite();

private: // from CActive
void RunL();
void DoCancel();

private:
RSocket& iSocket;
CSocketBase& iSocketBase;
CBufSeg* iLongBuffer;
RBuUf8 iShortBuffer;

Iy

In the second-phase constructor we add the achyectoto the active scheduler and then
initiate the two data buffers that are used fodssmthe data. A shorter buffer is used for the
actual write requests, and a longer buffer is usedueue the writable data until a new
request can be issued:

void CSocketWriter::ConstructL()

{
CActiveScheduler::Add(this);
iShortBuffer.CreateL(16384); // 16 KB

iLongBuffer = CBufSeg::NewL(256); // 256 byte for the granularity
}

The destructor frees up the resources and carmebctive object:

CSocketWriter::~CSocketWriter()

Cancel();
iShortBuffer.Close();
delete iLongBuffer;

}

The writeL() method puts the writable data into the write huHed issues a new write
operation if the active object is not active. Ifsitalready in the active state, then the data will
be sent after the current write request has bempleted:

void CSocketWriter::WriteL(const TDesC8& aBuf)

{

iLongBuffer->InsertL(iLongBuffer->Size(), aBuf);
if (lIsActive()) IssueWrite();

}

Issuing a new socket write request is performedilbyg up the short transfer buffer and
calling the asynchronous write operation. The dataad from the long buffer and is deleted
immediately from there:

113

void CSocketWriter::IssueWrite()

{

if (iLongBuffer->Size() < iShortBuffer.MaxLength()
iLongBuffer->Read(0, iShortBuffer, iLongBuffer- >Size());

else

iLongBuffer->Read(0, iShortBuffer);
iLongBuffer->Delete(0, iShortBuffer.Length());

iSocket.Write(iShortBuffer, iStatus);
SetActive();

}

Cancelling the socket writer is performed by cajlithe Cancelwrite() method of the
socket handle:

void CSocketWriter::DoCancel()

{
iSocket.CancelWrite();
}

In the event handler method, we get the resulthef last write request. If it has been
successful, we check whether there is data inghd buffer. If the buffer is not empty, a new
write request is issued. If the write request faien thedandlewriteErrorL() method of
the owner socket base is called. This is a vinmelhod that can be implemented by classes
derived fromCSocketBase() being notified when writing to the socket fails:

void CSocketWriter::RunL()

{
switch (iStatus.Int())
{

case KErrNone: // Writing to socket has been co mpleted
if (iLongBuffer->Size() > 0) IssueWrite();
break;

default: / Write error
iSocketBase.HandleWriteErrorL();
break;

}
}

7.4.5 Receiving Data from Sockets

Similarly to writing data to a socket, reading Iscaan asynchronous process and must be
handled via an active object. We are going to skiowhow to implement the socket reader
classCSocketReader Wwhich can actively read incoming data from a cate socket. This
class will also be owned by the base socket adassketBase ; thus, we pass a reference of
the owner to the constructor. A reference to a loytier is also passed. The received data
will be put into this buffer. We have chosen to aseexternally owned buffer, since the
received data will not be processed inside thesclas

class CSocketReader : public CActive

public:
CSocketReader(CSocketBase& aSocketBase, CBufBase& alongBuffer)
: CActive(EPriorityStandard),
iSocket(aSocketBase.Socket()), iSocketBase(aS ocketBase),

iLongBuffer(aLongBuffer) {}

void ConstructL();
~CSocketReader();

void StartReading();

protected: // from CActive
void RunL();

114 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

void RunError();
void DoCancel();

private:
RSocket& iSocket;
CSocketBase&iSocketBase;
CBufBase& iLongBuffer;
TBuf8<16384>iShortBuffer; // 16 KByte
TSockXfrLength iLastRecvLength;

g

We begin defining the methods with the second-pltasestructor and the destructor. The
constructor only needs to add the active objed¢héscheduler. The destructor cancels the
active object:

void CSocketReader::ConstructL ()

{
CActiveScheduler::Add(this);
}

CSocketReader::~CSocketReader()

Cancel();

Reading is started by the public meth&drtReading() . This checks the active object’s
status and, if it is not active, then issues a meguest by calling th&ecvOneOrMore()
method of the socket. This method requires a bulfegre the received data is stored and a
TSockxfrLength reference in which the length of the received datavritten after the
completion of the read request. TkevOneOrMore() request is completed when any data is
received. However, it is not specified whether ¢bat data is received in one larger burst or
in more, smaller ones:

void CSocketReader::StartReading()
{
if (lIsActive())

{
iSocket.RecvOneOrMore(iShortBuffer, 0, iStatus, iLastRecvLength);
SetActive();

}

Cancelling the receive request is performed byrattancelRecv()

void CSocketReader::DoCancel()

iSocket.CancelRecv();

}

In the event handler method, if the receive reqbhastbeen successful, the received data is
appended to the buffer that was given at the coctébn of the socket reader. This buffer is
owned by the socket base class, which is notifigdcalling its OnReceivelL() virtual
method. Classes derived frobsocketBase can process data by accessing the long buffer.
Failure of the receive request is handled byHheilewriteL() virtual method of the socket
base class:

void CSocketReader::RunL()

{
switch (iStatus.Int())
{
case KErrNone:
iLongBuffer.InsertL(iLongBuffer.Size(), iShor tBuffer);
iShortBuffer.SetLength(0); // Reset the short buffer

115

StartReading(); // Continue reading

iSocketBase.OnReceiveL(); // Notify the owner socket base object
break;

default:
iSocketBase.HandleReadErrorL();
break;

}
}

7.4.6 The Socket Base Class

The socket base is an abstract class that encégsalaocket. It allows reading and writing
of the socket by using @SocketWriter ~ and aCSocketReader instance. Its virtual methods,
which were also discussed briefly with the codehef socket reader and writer, notify the
derived class when incoming data is received oeraor occurs. In SymTorrent, this is the
base class of the peer connection class. Geneitatgn be used wherever a connected socket
is needed. We derive the class framctive so that it can be used to encapsulate other
asynchronous requests besides reading or writegalcket. One important use case for this
is establishing a connection to another host. Sicmenecting is also an asynchronous
request, the socket base can be used as its abjse:

class CSocketBase : public CActive
{

public:
CSocketBase() : CActive(EPriorityStandard) {}
void ConstructL();
void ConstructL(RSocket& aSocket);
~CSocketBase();

public:
void SendL(const TDesC8& aDes);
inline RSocket& Socket() { return iSocket; }

protected:
virtual void OnReceivelL() = 0; // Called when inc oming data is received
virtual void HandleReadErrorL() = 0; // Called on read error
virtual void HandleWriteErrorL() = O; // Called o n write error
protected:
RSocket iSocket;
CBufFlat* iRecvBuffer; // Buffer passed to the so cket reader

TBool ilncomingConnection;

private:
CSocketReader* iSocketReader;
CSocketWriter* iSocketWriter;

friend class CSocketReader; // for calling Handle ReadErrorL()
friend class CSocketWriter; // for calling Handle WriteErrorL()

I

The class has two second-phase constructors. Thewndhout parameters is used in the
general case when we want to establish the commetdianother host. By contrast, the other
overload takes an already connected socket hamtlis. can be used when an incoming
connection is accepted (i.e. by using our previpwelitten socket listener). The already
connected socket is attached to the socket basanaes There is a protected member
variable,ilncomingConnection , that enables us to check whether this socketintalized
with an incoming connection. In the constructog tietwork connection is started, the socket
is initialized, and then the socket reader andewiiistances are created. Reading from the
socket is started immediately:

void CSocketBase::ConstructL()
{

116 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

if ('NetMgr()-> IsNetworkConnectionStarted())
NetMgr()->StartNetworkConnectionL();

if (lilncomingConnection)
iSocket.Open(NetMgr()->SocketServ(), KAfinet,

KSockStream, KProtocollnetTcp, NetMgr()->Netw orkConnection());
iRecvBuffer = CBufFlat::NewL(256); // 256 byte gr anularity of buffer expansion
iSocketReader = new (ELeave) CSocketReader(*this, *iRecvBuffer);

iSocketReader->ConstructL();
iSocketReader->StartReading();

iSocketWriter = new (ELeave) CSocketWriter(*this);
iSocketWriter->ConstructL();

}

void CSocketBase::ConstructL(RSocket& aSocket)
{

ilncomingConnection = ETrue;
iSocket = aSocket;

ConstructL(); // Call the other overload

}

To send data, the socket writer instance can be. dsemake the operation simpler, we can
create asend() method that calls thewriteL() method of the socket writer. It should be
noted that, since this is an asynchronous operati@nprogram is not stopped at this point.
The write() request is forwarded to the socket server, andisgnof data takes place

asynchronously in another process. In this implegatem, the socket base class is not
notified when a write request is completed; howgiteis not a difficult task to add such a
function toCSocketWriter

void CSocketBase::SendL(const TDesC8& aDes)

{
iSocketWriter->WriteL(aDes);
}

The socket base can be used for several purpobesddrived classes must implement its
three pure virtual methods, most importantly thé&ReceiveL() method. The example here
does not establish a connection. Connecting caimp&mented by using theonnect()
method of the socket handRSpcket).

7.4.7 The Peer Connection

Now that we have a framework that enables us td s&twork connections, listen for
incoming TCP/IP connections, and send/read dathe@sockets, we can move on to creating
the class that encapsulates a peer connectionitTrorBent, the content of the torrent is
downloaded from the peers. We do not have the sfmage into the peer communication
protocol specification or the complex logic of tblass. Instead, we will show some of the
more interesting methods of the class as exampléee peer connections
(CSTPeerConnection) are associated with a torrent. On the code levidle
CSTPeerConnection instances are owned bycaTTorrent instance. The complete version
of these classes can be found in the project SyreftiEngine. All the names of the classes
in the engine are prefixed with ST, which referSyonTorrent.

117

Failed to establish TCP session

>L Not connected

Handshake failed VTCP session established
TCP connected)

Connection lost

Handshake succeeded

v
1

(Peer wire connected)

Close issued

\ 4
Connection closed (Closing connection)

Figure 7.8 State chart of a peer connection

A state chart of a peer connection life cycle carséen in Figure 7.8. Newly created
peer connections are not connected. The curretd sastored in theState member
variable. This is an enumeration, referred taRserConnectionState . The various values
it can take are as follows:

* EPeerNotConnected : the peer is not connected.

* EPeerTcpConnecting : the peer is establishing a TCP connection.

* EPeerPwHandshaking : the peer is performing the BitTorrent (peer-winendshake.
* EPeerPwConnected : the peer is connected (the handshake is complete)

* EPeerClosing :the peer is disconnected and freeing up its regsu

As you can see, a newly created, unconnected @egrection enters the listed states in a
sequential order. Firstly, it establishes a corinactand then it performs the handshake. If
the handshake has been successful, it enters tinected state and exchanges messages until
the connection is closed. The protocol of the hhakls and the messages are fixed, and its
specification can be found at the official BitTortesite [2]. Without going into such detail,
we will investigate thednReceiveL() method of the class, which is called when incoming
data is received. If the peer is still in the hdrade state, then the size of the received data is
checked. If the whole handshake string is receitbdn parsing the handshake can be
performed. You can see that the received dateais irdmiRecvBuffer , the buffer that we
also passed to the socket reader. The length diufier can be queried, along with the data
contained.

Receiving messages in the connected state workladymThe first step is to check
the length of the next message, which is transchiie a four-byte integer. All of the
BitTorrent messages begin with this length prefitaving at least as many bytes in the
receive buffer as the parsed message length meaina hew message has been received, and
can be parsed. It is very important that, afteccpssing the message, it be deleted from the
receive buffer so that the next message can begsed:

void CSTPeerConnection::OnReceiveL()

{
switch (iState)

118 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

case EPeerPwHandshaking:

{

TInt protLength = (iRecvBuffer->Ptr())[0];
TInt handshakeLength = protLength + 1 + 48;
if (IRecvBuffer->Size() >= handshakelLength)

/I Parse handshake...

}
break;
case EPeerPwConnected:
\{Nhile (iRecvBuffer->Size() >= 4)

TUint messagelLength = ReadInt();
if (TUint(iRecvBuffer->Size()) >= (4 + mess agelength))

/I Process incoming message...

/I Delete the processed data from the buf fer
iRecvBuffer->Delete(0, 4 + messagelength) ;

}

else
break;

break;
}
}

We used the methakadint() in the implementation abnReceiveL() . This method shows
how a four-byte-long integer can be extracted fthenbuffer:

TUint CSTPeerConnection::ReadInt(TInt alndex)

{
TPtrC8 ptr = iRecvBuffer->Ptr().Right(
iRecvBuffer->Ptr().Length() - alndex);

TUint value = ptr[0] << 24;
value += (ptr[1] << 16);
value += (ptr[2] << 8);
value += ptr[3];

return value;

}

Sending an integer can be performed by separagaljirsg all of its four bytes:

void CSTPeerConnection::SendIntL(TUint32 alnteger)

{
TBuf8<4> buffer;
buffer.SetLength(4);

buffer[3] = alnteger & OxFF;

buffer[2] = ((alnteger & (OxFF << 8)) >> 8);
buffer[1] = ((alnteger & (OXFF << 16)) >> 16);
buffer[0] = ((alnteger & (OXFF << 24)) >> 24);

SendL (buffer);

Closing and deleting a peer connection is performeivo steps. As mentioned earlier, the
peer connection instances are created and ownedcBYyTorrent instance. Thus, it is also
the owner’s responsibility to delete the instanédso, there are various tasks that have to be
performed when a peer is disconnected, such asgtrp establish new connections or
removing the peer’'s address if it has failed toonyndmes. To do so, peers close their
connection and set the value of the variable theerdhines the tasks that have to be

119

performed. This variable, which is an instancehaf €numeratiomConnectionCloseOrder
and is referred to asloseOrder , can be set to the following values:

* EDeletePeer :the peer has to be deleted.

* ElncreaseErrorCounter : the error counter of the peer has to be increased
* EDelayReconnect : the peer should be reconnected after a shory.dela

* ENotSpecified : no specified order.

After settingiCloseOrder , the state of the peer is changed to closing. Aftex; the peer is
not deleted immediately. Instead, it will be detetey the CSTTorrent owner when it
becomes aware that there is a peer that is clos8iJorrent periodically checks its peers to
see whether they are closing:

void CSTPeerConnection::Closel (TConnectionCloseOrde r aOrder)
{
if (iIState != EPeer d osi ng)
iCloseOrder = aOrder;

iSocketReader->Cancel();
iSocketWriter->Cancel();
iSocket.Close();

ChangeState(EPeer d osi ng);
}

7.4.8 The Tracker Connection

The tracker is a fundamental component of the BrEd system. It is responsible for
coordinating the whole swarm and supplying the peleiresses to its clients. Each BitTorrent
client must periodically establish connectionshe tracker to obtain new peer addresses and
announce its presence to the swarm. The clientsntoncate with the tracker via standard
HTTP GET requests. Fortunately, Symbian OS offdramework that makes issuing HTTP
requests an easy procedure. Here, we show the ckSBackerConnection , which is
responsible for announcing to the tracker in Symdidr To be able to receive HTTP events,
the MHTTPTransactionCallback interface must be implemented. Its methods areddy

the framework when an event is received duringHii@P request. This class is also part of
the project SymTorrentEngine:

class CSTTrackerConnection : public CBase,
public MHTTPTransactio nCallback

{
public:
enum TDownloadResult

EPendi ng =0,
EFai | ed,
ESucceeded

I

CSTTrackerConnection(CSTTorrent& aTorrent,
TTrackerConnectionEvent aEvent = ETr acker Event Not Speci fi ed)
: iTorrent(aTorrent), iEvent(aEvent) {}

void ConstructL();
~CSTTrackerConnection();

void StartTransactionL();

void Cancel();

TBool IsRunning() const;

TDownloadResult Result() { return iResult; }
TTrackerConnectionEvent Event() const;

private:

120 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

void SetHeaderL(RHTTPHeaders aHeaders, TInt aHdrF ield,
const TDesC8& aHdrValue);

void SetFailed();

void CreateUriL();

private: // from MHTTPSessionEventCallback
void MHFRunL(RHTTPTransaction aTransaction, const THTTPEvent& aEvent);
TInt MHFRunError(TInt aError, RHTTPTransaction aTransaction,
const THTTPEvent& aEvent);

private:
CSTTorrent& iTorrent;
RHTTPSession iSession;
RHTTPTransaction iTransaction;
TDownloadResult iResult;
HBufC8* iUri;
HBufC8* iReceiveBulffer;
TTrackerConnectionEvent iEvent;

Iy

The various states through which the system gode warforming the HTTP transaction are
depicted in Figure 7.9.

Starting HTTP

| transaction

Server connected

Y

status code = 200 Got HTTP
response headers

status code = 200

Failed to connect server

Vv
Got HTTP
response body
A4 A 4

HTTP transaction HTTP transaction
Failed succeeded

Figure 7.9 HTTP transaction state chart

Starting the actual HTTP transaction is carried oby the method
StartTransactionL() . The first part of the method might seem to bitle lcomplicated. It
is responsible for setting the various parameteteeHTTP session, including the preferred
network connection. The result is the same as with sockets: no network connection
selection dialog is popped up, and it uses the ordtwonnection we set up before. After
setting these basic properties, listening on a efoisk started. This step is not required to
establish a connection to the tracker, but we shdea aware that other peers will try to
connect us after we have connected to the tradKkaus, this is the right point to start
listening. The last step is to create the URI &duece identification string) of the request and
configure some basic headers, such as the nanfe afser agent and the type of acceptable
content. Finally, the request is issued by calogmitL() on the HTTP transaction:

void CSTTrackerConnection::StartTransactionL()

{

iSession.OpenL(); // Open HTTP session

RStringPool strP = iSession.StringPool();

RHTTPConnectioninfo conninfo = iSession.Connectio ninfo();

121

/I Set the socket server property

connlinfo.SetPropertyL(strP.StringF(HTTP:: EHt t pSocket Ser v,
RHTTPSession::GetTable()), THTTPHdrVal(NetMgr() ->SocketServ().Handle()));

/I Set the network connection property

TInt connPtr = REINTERPRET_CAST(TInt, &(NetMgr()- >NetworkConnection()));

connlinfo.SetPropertyL(strP.StringF(HTTP:: EHt t pSocket Connect i on,
RHTTPSession::GetTable()), THTTPHdrVal(connPtr));

/I Start listening before connecting to the track er

NetMgr()->StartListeningL (0, Preferences()->Incom ingPort());

/I Create URI string for the HTTP request
CreateUriL();

TUriParser8 uri;

uri.Parse(*iUri);

RStringF method = iSession.StringPool().StringF(H TTP:: ECET,
RHTTPSession::GetTable());

iTransaction = iSession.OpenTransactionL (uri, *th is, method);

RHTTPHeaders hdr = iTransaction.Request().GetHead erCollection();
_LIT8(KUserAgent, "SymTorrent");

SetHeaderL(hdr, HTTP:: EUser Agent , KUserAgent);

_LIT8(KAccept, "*/*"); /] Accept all content type

SetHeaderL(hdr, HTTP:: EAccept , KAccept);

/I Submit the transaction.
iTransaction.SubmitL();
iRunning = ETr ue;

}

After starting the HTTP GET request, events willrbeeived according to the various states
of the transaction. These can be handled in thealimethodvHFRunL(). There are several
events, the most important of which are as follows:

* THTTPEvent:EGotResponseHeaders : the HTTP headers are received. Here we should

check the status code of the transaction, whicleatsf whether the request has been
successful. In the example, we check whether ttestode 200 is received. We can also
check the various headers that are received iregponse.
THTTPEvent::EGotResponseBodyData : this event is triggered when a part of the botly o
the response is received. The body can be accessethe Body() method of the
transaction. In this example, we create a dateebaifid append the received body part to
it. After we have processed the received data, ustmbe released by calling
ReleaseData() on the body. This event could be triggered mudtinines, based on how
many parts of the response are received.

THTTPEvent::ESucceeded : this event means that the HTTP transaction hasesaed.
Here we can process the received data, in ourtbadest of peers sent by the tracker. A
method ofcsTTorrent is called that processes the response and regibeeneceived
peer addresses.

THTTPEvent:EFailed : this event is triggered if the transaction fails SymTorrent, this
results in closing the transaction and settingstage of the class to failed.

void CSTTrackerConnection::MHFRunL(RHTTPTransaction aTransaction,
const THTTPEvent& aEvent)

switch (aEvent.iStatus)

{
case THTTPEvent: EGot ResponseHeader s:

RHTTPResponse resp = aTransaction.Response();

Tint status = resp.StatusCode();

if (status != 200)

122 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

SetFailed();
Cancel();
break;
case THTTPEvent:: EGot ResponseBodyDat a:
MHTTPDataSupplier* body = aTransaction.Respon se().Body();

TPtrC8 dataChunk;
body->GetNextDataPart(dataChunk);

if (iReceiveBuffer)

{

HBufC8* temp = HBufC8::NewL (iReceiveBuffer- >Length() + dataChunk.Length());
TPtr8 tempPtr(temp->Des());

tempPtr.Copy(*iReceiveBuffer);

tempPtr.Append(dataChunk);

delete iReceiveBuffer;
iReceiveBuffer = temp;

}

else
iReceiveBuffer = dataChunk.AllocL();

body->ReleaseData();
break;

case THTTPEvent:: ESucceeded:
iResult = ESucceeded;

CSTBencode* bencodedResponse = CSTBencode:: Par seL (*iReceiveBuffer);
if (bencodedResponse)

CleanupStack::PushL(bencodedResponse);

iTorrent.ProcessTrackerResponseL(bencodedRe sponse);
CleanupStack::PopAndDestroy(bencodedRespons e);
}
aTransaction.Close();
iRunning = EFal se;
break;
case THTTPEvent:: EFai | ed:
SetFailed();
aTransaction.Close();
iRunning = EFal se;
break;
default:

if (@aEvent.iStatus < 0)

{

SetFailed();
aTransaction.Close();
iRunning = EFal se;

break;
}
}

7.4.9 The Torrent

The torrent classcETTorrent) is one of the more complex classes of SymToraerd,thus it
cannot be discussed in full detail here. The tdrestablishes connections to the peers, and it
is also responsible for periodically issuing trackanounces via aSTTrackerConnection
instance. The main part of the application logiemplemented in th®nTimerL() method
which is triggered by a timer every second. Theosds passed since opening the torrent is
counted byiEllapsedTime . The first part is responsible for maintaining thracker
connection: if there is an active connection, thenresult is checked. If the tracker
connection fails, then a new request is issued tindiretry limit is reached (in our case, 10).
In the second part of the method, two main taslks carried out. Firstly, the tracker is

123

announced if the specified timeout limit is reach®dcondly, the peers are updated and new
peer connections are established if needsdPeer is a class that stores the address and
some general properties of a peer. When the peeonsected, aCSTPeerConnection
instance is created:

void CSTTorrent::OnTimerL()
iEllapsedTime++;

if (iTrackerConnection)

{

iTrackerConnection->OnTimerL();
switch (iTrackerConnection->Result())

case CSTTrackerConnection:: ESucceeded:
iTrackerFailures = 0;

iLastTrackerConnectionTime.HomeTime();
delete iTrackerConnection;
iTrackerConnection = NULL;
break;

case CSTTrackerConnection:: EFai | ed:
iTrackerFailures++;

delete iTrackerConnection;
iTrackerConnection = NULL;

if (IActive && (iTrackerFailures < 10))
AnnounceL();
break;
}

}
if (IActive)

if ((IEllapsedTime % iTrackerRequestinterval) = =0)
AnnounceL();

for (TInt i=0; i<iPeers.Count(); i++)

{
CSTPeer* peer = iPeers][i];
peer->OnTimerL();

if (peer->State() |= EPeer Not Connect ed) // The peer is connected
activeConnectionCount++;

else // The peer is not connected
if (liComplete) && (activeLocalConnectionCount < KMaxPeerConnectionCount))

peer->ConnectL(*this, iTorrentMgr);
activeConnectionCount++;
}
}
}
}

7.4.10 The Torrent Manager

The torrent manageicéTTorrentManager) is the central singleton class of SymTorrent’s
engine. It is responsible for creating the torremtd other system-level tasks. Here, we show
the method that loads a new torrent file and attts the engine. Torrent files are loaded by
the LoadL() method ofcsTTorrent . If loading the file has been successful, thenrtbely
createdCsTTorrent instance is added to the array of torrents, andnrediately starts
downloading:

TInt CSTTorrentManager::OpenTorrentL(const TDesC& a FileName)

{
CSTTorrent* torrent = new(ELeave) CSTTorrent(this);

124 SymTorrent AND GridTorrent: DEVELOPING BitTormeCLIENTS ON THE SYMBIAN PLATFORM

CleanupsStack::PushL (torrent);
torrent->ConstructL();
TInt loadResult = torrent->LoadL (aFileName);

if (loadResult == KErrNone)

iTorrents.AppendL(torrent);
CleanupStack::Pop(); // torrent

torrent->Start(); / Start downloading the torr ent
else

{
CleanupStack::PopAndDestroy(); // torrent
return loadResult;

}
}

7.4.11 Differencesin GridTorrent

As stated before, GridTorrent is built on top of game engine as SymTorrent. Actually, we
extended SymTorrent’s engine with the features eeday GridTorrent. The most notable
differences are in network connection handling amdhe application logic of the peer
connections. On the network connection level, Symérd requires only one type of active
connection (e.g. 3G). In contrast to this, Grid€atrcommunicates with the local peers over
a different network connection to that used for shendard peers acquired from the tracker.
This means that the network manager needs to ka@blandle several network connections,
and these must be made available for the differativorking objects, such as sockets.
Another problem was that we had to add supportBimetooth connections, which are
handled somewhat differently to WLAN/3G/GPRS. Alligh Bluetooth also uses sockets, it
is not supported by the access point framework mndt be initialized in a completely
different way. In GridTorrent, Bluetooth connectsoare used just like the other connections;
most of the differences are handled in the netwuodnager. However, there is one key
difference: the nature of how Bluetooth networkskv&urrently, devices based on Symbian
OS support only the Bluetooth piconet scheme. Ritsohave one master peer and up to
seven slave peers. Connections can only be establisy the master. GridTorrent supports
both this point-to-multipoint scheme and the stadd&-based WLAN/GPRS networks. If
the local connection is Bluetooth, the peer musiosk between slave and master modes. If
WLAN is used, connection can be established betwsepeers in both directions.

In addition to the network connection layer, peemreections and the piece selection
strategy also work differently in GridTorrent. Wroduced a couple of new messages that
enable the peers in the local cluster to informheaiher about their progress. Since peers
know which pieces are available in the local clydteey can focus on downloading the rarer
pieces from the Internet. The piece selection egsaneeds further work, but current results
show that even this simple algorithm considerabtyeases the performance of the swarm.

7.5 Conclusion

In this chapter we have shown how a complex pe@ety application handles network
connections and sockets. We have discussed thesbasithe BitTorrent protocol and
analyzed a small part of the source code of atclgiiten in Symbian C++. We have also
outlined the concepts behind GridTorrent, the werfualst BitTorrent client that utilizes local
cooperation to save energy and increase transéads@lthough we have not been able to
discuss every part in detail, the source code ai Byrent is freely available for anyone who
is looking for a deeper insight into programminglnt® peer-to-peer clients.

References

[1]
[2]
[3]
[4]
[5]

[6]

125

Cohen, B., Incentives Build Robustness in BitTorrent’. In Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems,eBarkCA, June 2003.

Cohen, B., The BitTorrent Protocol Specification’. Available at:
http://www.bittorrent.org/beps/bep 0003.htfatcessed 6 September 2008].
Loewenstern, A, DHT Protocol’. Available at:
http://www.bittorrent.org/beps/bep _0005.htfatcessed 6 September 2008].

Kelényi, 1., ‘SymTorrent webpage'. Available at:http:/symtorrent.aut.ome.Haccessed
25 February 2009].

Willee, H., ‘Symbian OS Support for Writeable Static Data in DLLsv2.3'. The Symbian
Developer Network. Available at:
http://developer.symbian.com/main/downloads/paptat¢ data/SupportForWriteable
StaticDatalnDLLs.pdfaccessed 25 February 2009].

Morris, B., ‘CActive and Friends v1.89'. The Symbian Developer Network. Available
at:

http://developer.symbian.com/main/downloads/pagstive AndFriends/CActiveAn
dFriends.pdfaccessed 25 February 2009].

