
Business Informatics Group

Institute of Software Technology and Interactive Systems

Vienna University of Technology

Favoritenstraße 9-11/188-3, 1040 Vienna, Austria

phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896

office@big.tuwien.ac.at, www.big.tuwien.ac.at

Reusing Model Transformations across

Heterogeneous Metamodels*

M. Wimmer, A. Kusel, W. Retschitzegger, J. Schönböck,

W. Schwinger, J. S. Cuadrado, E. Guerra, and J. de Lara

5th International Workshop on Multi-Paradigm Modeling (MPM 2011)

Johannes Schönböck

 *This work has been partly funded by the Austrian Science Fund (FWF) under grant P21374-N13.

http://www.fwf.ac.at/index.asp

Motivation (1/2)

 Model transformations are key enablers for multi-paradigm modeling

 However: little support for reusing transformations in different

contexts, since they are tightly coupled to metamodels

2

Approach Motivation Future Work Heterogeneities

rule UMLClass2Class {

 from uClass : UML!UMLClass

 to class : CD!Class (

 name <- uClass.name,

 superClass <- uClass.superClass

)

}

Class

name:String

0..1

superClass

UMLClass

name:String

0..1

superClass

Source MM Target MM

Transformation in ATL Rules are bound to

conrete MM types

JavaClass

name:String

0..1

extends

Component

name:String

0..*

subComponents

New Source MM New Target MM

?
How to reuse the transformation

in a different context?

Idea: Generic model transformations

(i.e., decoupling of transformation logic

and MMs) as a reuse mechanism

Adapters

15

binding UMLClass2Component{

 class UMLClass to Component

 feature UMLClass.name

 is Component.name

 feature UMLClass.superClass

 is Component.allInstances() ->

 select(c | c.subComponents ->

 includes(self)) -> first();

}

Motivation (2/2)

3

rule UMLClass2Class {

 from uClass : UML!UMLClass

 to class : CD!Class (

 name <- uClass.name,

 superClass <- uClass.superClass

)

}

HOT
input input

input

output

Class

name:String

0..1

superClass

JavaClass

name:String

0..1

extends

Component

name:String

0..*

subComponents

UMLClass

name:String

0..1

superClass

Concept Source MM

Specific Source MM

Concept Target MM

Specific Target MM

Generic Model Transformation

rule Component2JavaClass {

 from component : C!Component

 to jClass : Java!JavaClass (

 name <- component.name,

 extends <-

 C!Component.allInstances() ->

 select(c |c.subComponents ->

 includes(self)) -> first()

)

}

Binding Model

Binding Class2JavaClass{

 class Class to JavaClass

 feature Class.name

 is JavaClass.name

 feature Class.superClass

 is JavaClass.extends

}

Binding Model

Recurring heterogeneities

must be resolved manually

1 Adaptations are

scattered across

transformation logic

2

Complex

HOT

3

Specific Model Transformation

Classes, attributes, and references

of the concept MMs are variables

that are bound to the specific MMs

Approach Motivation Future Work Heterogeneities Adapters

15

Approach

 Problem 1: Recurring heterogeneities must be resolved manually

 For resolving common heterogeneities, a library of generic and

composable adapters in the form of templates is proposed

 Adapters realize a virtual view on the specific MM, which provide

required features of the concept MM  a subtype relationship is

established

 Selection of adapters happens automatically by analyzing bindings of

the binding model

 Problem 2: Adaptations are scattered across transformation logic

 Adapters are realized by means of helper functions

 Consequently, adapters are added to the transformation, but not

intermingled with the transformation

 Problem 3: Complex HOT

 Templates exist for adapters; these may be easily instantiated, without

the need of analyzing and rewriting existing transformation code

4

Question 1:

What are common heterogeneities?

Approach Motivation Future Work Heterogeneities Adapters

15

Exemplary Heterogeneities between MMs

5

NamedElement

name:String

Property

primitiveType:String

UMLClass
Package ownedClasses 0..*

0..* superClasses
ownedProperties

0..*

NamedElement
name:String

Specific MM

Attribute JavaClass Package

ownedElements 0..*

extends
class

1..1 SimpleType
0..1

simpleType

0..1

1

1

2

2

3

3

4

4

Concept MM Package.ownedClasses

refers to a more specific class
than Package.ownedElements

1

UMLClass.superClasses allows for multiple

inheritance, whereas JavaClass.extends

allows for single inheritance, only

2

UMLClass.ownedProperties points to

inverse direction of Attribute.class

3

The attribute
Property.primitiveType is

realized by an additional class
SimpleType

4

How to obtain a systematic

set of heterogeneities?

Approach Motivation Future Work Heterogeneities Adapters

15

Analysis of Heterogeneity #3

6

:EClass

name = ‘UMLClass‘

abstract = false

:EClass

name = ‘Property‘

abstract = false

name = ‘ownedProperties‘

ordered = true

lowerBound = 0

upperBound = -1

containment = true

:EReference

eStructFeatures

eRefType

:EClass

name = ‘Attribute‘

abstract = false

:EClass

name = ‘JavaClass‘

abstract = false

name = ‘class‘

ordered = true

lowerBound = 1

upperBound = 1

containment = false

:EReference

eStructFeatures

eRefType

Concept MM Specific MM

Property

UMLClass

ownedProperties

0..*

Attribute

JavaClass

class
1..1

3
3

C
o

n
c

re
te

 S
y
n

ta
x

A
b

s
tr

a
c

t
S

y
n

ta
x

Naming Diff

Naming Diff

Naming Diff
Containment

Diff

Multiplicity
Diff

Direction
Diff

Heterogeneities arise due to different

values of Ecore meta-features!

Approach Motivation Future Work Heterogeneities Adapters

15

Systematic Set of Heterogeneities

7

EClass

abstract : boolean

ENamedElement

name : String

EClassifier

…

ETypedElement

ordered : boolean

lowerBound : int

upperBound : int

eStructuralFeatures

0..*
EStructuralFeature

…

EReference

containment : boolean

EAttribute

eReferenceType
1..1

EDataType

eAttributeType

1..1 eSuperTypes

0..*

…

…

Naming Diff

Order Diff

Multiplicity Diff

Containment Diff

Datatype Diff

Context Diff Direction Diff

Target Diff

Multiplicity Diff

Approach Motivation Future Work Heterogeneities Adapters

15

Approach

 Problem 1: Recurring heterogeneities must be resolved manually

 For resolving common heterogeneities, a library of generic and

composable adapters in the form of templates is proposed

 Adapters realize a virtual view on the specific MM, which provide

required features of the concept MM  a subtype relationship is

established

 Selection of adapters happens automatically by analyzing bindings of

the binding model

 Problem 2: Adaptations are scattered across transformation logic

 Adapters are realized by means of helper functions

 Consequently, adapters are added to the transformation, but not

intermingled with the transformation

 Problem 3: Complex HOT

 Templates exist for adapters; these may be easily instantiated, without

the need of analyzing and rewriting existing transformation code

8

Question 2:

How to resolve the heterogenties by adapters?

Approach Motivation Future Work Heterogeneities Adapters

15

Exemplary Adapter by Means of a Helper Function

helper context Java!JavaClass def : ownedProperties :

Sequence(Java!Attribute) = Java!Attribute.allInstances()->

 select(a| a.class = self);

9

Concept MM Specific MM

Property

UMLClass

ownedProperties

0..*

Attribute

JavaClass

class
1..1

3
3

C
o

n
c

re
te

 S
y
n

ta
x

ownedProperties
0..*

Specific MM is

extended by a

virtual feature

Virtual feature is realized by a helper function

If a generic transformation accesses
JavaClass.ownedProperties on

the specific MM  an error arises!

Now, the access to
JavaClass.ownedProperties

is enabled!

Approach Motivation Future Work Heterogeneities Adapters

15

Subtype Relationship

10

NamedElement

name:String

Concept MM

Property

primitiveType:String

UMLClass Package
ownedClasses 0..*

0..*

superClasses
ownedProperties

0..*

NamedElement

name:String

Specific MM

Attribute

primitiveType:String

JavaClass Package

ownedElements

0..*

0..1

extends

class

1..1 SimpleType
0..1

simpleType

ownedClasses

0..* 0..*
superClasses

ownedProperties
0..*

Through the

specification of virtual

features, a subtype

relationship is

established

Approach Motivation Future Work Heterogeneities Adapters

15

Approach

 Problem 1: Recurring heterogeneities must be resolved manually

 For resolving common heterogeneities, a library of generic and

composable adapters in the form of templates is proposed

 Adapters realize a virtual view on the specific MM, which provide

required features of the concept MM  a subtype relationship is

established

 Selection of adapters happens automatically by analyzing bindings of

the binding model

 Problem 2: Adaptations are scattered across transformation logic

 Adapters are realized by means of helper functions

 Consequently, adapters are added to the transformation, but not

intermingled with the transformation

 Problem 3: Complex HOT

 Templates exist for adapters; these may be easily instantiated, without

the need of analyzing and rewriting existing transformation code

11

Question 3:

How does the binding model look like?

Approach Motivation Future Work Heterogeneities Adapters

15

Binding Model

12

1 binding UML2Java{

2 class Package to Package

3 feature Package.ownedClasses

4 is Package.ownedElements

5 class UMLClass to JavaClass

6 feature UMLClass.superClasses

7 is JavaClass.extends

8 feature UMLClass.ownedProperties

9 is Attribute.class

10 class Property to Attribute

11 feature Property.primitiveType

12 is Attribute.simpleType.name

13 }

1:1 bindings suffice!

1

2

3

4

Approach Motivation Future Work Heterogeneities Adapters

15

Adaptation Process

13

Specific Model

Transformation

Heterogeneity

Reasoning

Concept MM

Specific MM

Binding

Model

Adapter

Templates

Hetero-

geneity

Model

Transformation

Adaptation

Comparison of meta-

features to calculate the

heterogeneity model

1 Adapt the generic model

transformation by (1) rewriting class

names and (2) adding adapters

2

Generic Model

Transformation Adaptation Process

Approach Motivation Future Work Heterogeneities Adapters

15

Template for Resolving Target Difference

14

helper context <specificRef.owner> def : <conceptRef.name> :

<conceptRef.type.resolve> =

self.<specificRef.name> -> select(x|

x.oclIsKindOf(<conceptRef.type.resolve>));

helper context Java!Package def : ownedClasses :

Sequence(Java!JavaClass) =

self.ownedElements -> select(x|

x.oclIsKindOf(Java!JavaClass));

Template

Exemplary Instantiation

of Template

Approach Motivation Future Work Heterogeneities Adapters

Future Work

 Handling Heterogeneities between Classes

 So far, only differences between attributes and references have been

considered

 Definition of virtual classes by means of helper functions would be

required to consider also differences between classes

 Reusing Transformations for Specific Target MMs

 So far, only adaptations of the source MM have been performed

 This is, since it is not possible to query the target model to provide virtual

features

 Specialization of Constraints

 Also constraints on the concept MMs have to be translated for specific

MMs

 15

Approach Motivation Future Work Heterogeneities Adapters

15

Thank you for your attention!

16

http://www.modeltransformation.net

15

