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Motivation (1/2) 

 Model transformations are key enablers for multi-paradigm modeling 

 However: little support for reusing transformations in different 

contexts, since they are tightly coupled to metamodels 
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Approach Motivation Future Work Heterogeneities 

rule UMLClass2Class  { 

  from uClass : UML!UMLClass 

  to class : CD!Class ( 

    name <- uClass.name, 

    superClass <- uClass.superClass 

  ) 

} 
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How to reuse the transformation 

in a different context? 

Idea: Generic model transformations 

(i.e., decoupling of transformation logic 

and MMs) as a reuse mechanism 

Adapters 
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binding UMLClass2Component{ 

  class UMLClass to Component 

    feature UMLClass.name  

    is Component.name 

    feature UMLClass.superClass 

    is Component.allInstances() ->  

       select(c | c.subComponents ->  

       includes(self)) -> first(); 

} 

Motivation (2/2) 
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rule UMLClass2Class  { 

  from uClass : UML!UMLClass 

  to class : CD!Class ( 

    name <- uClass.name, 

    superClass <- uClass.superClass 

  ) 

} 
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Generic Model Transformation 

rule Component2JavaClass  { 

  from component : C!Component 

  to jClass : Java!JavaClass ( 

    name <- component.name, 

    extends <-  

        C!Component.allInstances() -> 

        select(c |c.subComponents -> 

        includes(self)) -> first() 

  ) 

} 

Binding Model 

Binding Class2JavaClass{ 

  class Class to JavaClass 

    feature Class.name  

    is JavaClass.name 

    feature Class.superClass 

    is JavaClass.extends 

} 

Binding Model 

Recurring heterogeneities 

must be resolved manually 

1 Adaptations are 

scattered across 

transformation logic 
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Complex 

HOT 

3 

Specific Model Transformation 

Classes, attributes, and references 

of the concept MMs are variables 

that are bound to the specific MMs 

Approach Motivation Future Work Heterogeneities Adapters 
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Approach 

 Problem 1: Recurring heterogeneities must be resolved manually 

 For resolving common heterogeneities, a library of generic and 

composable adapters in the form of templates is proposed 

 Adapters realize a virtual view on the specific MM, which provide 

required features of the concept MM  a subtype relationship is 

established 

 Selection of adapters happens automatically by analyzing bindings of 

the binding model 

 Problem 2: Adaptations are scattered across transformation logic 

 Adapters are realized by means of helper functions 

 Consequently, adapters are added to the transformation, but not 

intermingled with the transformation 

 Problem 3: Complex HOT 

 Templates exist for adapters; these may be easily instantiated, without 

the need of analyzing and rewriting existing transformation code 
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Question 1: 

What are common heterogeneities? 

Approach Motivation Future Work Heterogeneities Adapters 
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Exemplary Heterogeneities between MMs 
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Concept MM Package.ownedClasses 

refers to a more specific class 
than Package.ownedElements 

1 

UMLClass.superClasses allows for multiple 

inheritance, whereas JavaClass.extends 

allows for single inheritance, only 

2 

UMLClass.ownedProperties points to 

inverse direction of Attribute.class 

3 

The attribute 
Property.primitiveType is 

realized by an additional class 
SimpleType 
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How to obtain a systematic 

set of heterogeneities? 
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Analysis of Heterogeneity #3 
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Heterogeneities arise due to different 

values of Ecore meta-features! 
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Systematic Set of Heterogeneities 

7 

EClass 

abstract : boolean 

ENamedElement 

name : String 

EClassifier 

… 

ETypedElement 

ordered : boolean 

lowerBound : int 

upperBound : int 

eStructuralFeatures 

0..* 
EStructuralFeature 

… 

EReference 

containment : boolean 

EAttribute 

eReferenceType 
1..1 

EDataType 

eAttributeType 

1..1 eSuperTypes 

0..* 

… 

… 

Naming Diff 

Order Diff 

Multiplicity Diff 

Containment Diff 

Datatype Diff 

Context Diff Direction Diff 

Target Diff 

Multiplicity Diff 

Approach Motivation Future Work Heterogeneities Adapters 

15 



Approach 

 Problem 1: Recurring heterogeneities must be resolved manually 

 For resolving common heterogeneities, a library of generic and 

composable adapters in the form of templates is proposed 

 Adapters realize a virtual view on the specific MM, which provide 

required features of the concept MM  a subtype relationship is 

established 

 Selection of adapters happens automatically by analyzing bindings of 

the binding model 

 Problem 2: Adaptations are scattered across transformation logic 

 Adapters are realized by means of helper functions 

 Consequently, adapters are added to the transformation, but not 

intermingled with the transformation 

 Problem 3: Complex HOT 

 Templates exist for adapters; these may be easily instantiated, without 

the need of analyzing and rewriting existing transformation code 
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Question 2: 

How to resolve the heterogenties by adapters? 

Approach Motivation Future Work Heterogeneities Adapters 
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Exemplary Adapter by Means of a Helper Function 

helper context Java!JavaClass def : ownedProperties : 

Sequence(Java!Attribute) = Java!Attribute.allInstances()->   

                                   select(a| a.class = self); 
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Specific MM is 

extended by a 

virtual feature 

Virtual feature is realized by a helper function 

If a generic transformation accesses 
JavaClass.ownedProperties on 

the specific MM  an error arises! 

Now, the access to 
JavaClass.ownedProperties 

is enabled! 
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Subtype Relationship 
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Approach 

 Problem 1: Recurring heterogeneities must be resolved manually 

 For resolving common heterogeneities, a library of generic and 

composable adapters in the form of templates is proposed 

 Adapters realize a virtual view on the specific MM, which provide 

required features of the concept MM  a subtype relationship is 

established 

 Selection of adapters happens automatically by analyzing bindings of 

the binding model 

 Problem 2: Adaptations are scattered across transformation logic 

 Adapters are realized by means of helper functions 

 Consequently, adapters are added to the transformation, but not 

intermingled with the transformation 

 Problem 3: Complex HOT 

 Templates exist for adapters; these may be easily instantiated, without 

the need of analyzing and rewriting existing transformation code 
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Question 3: 

How does the binding model look like? 
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Binding Model 
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1 binding UML2Java{ 

2  class Package to Package 

3    feature Package.ownedClasses  

4    is Package.ownedElements 

5  class UMLClass to JavaClass 

6    feature UMLClass.superClasses 

7    is JavaClass.extends 

8    feature UMLClass.ownedProperties 

9    is Attribute.class 

10  class Property to Attribute 

11   feature Property.primitiveType 

12   is Attribute.simpleType.name 

13 } 

1:1 bindings suffice! 

1 

2 

3 

4 
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Adaptation Process 
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Template for Resolving Target Difference 
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helper context <specificRef.owner> def : <conceptRef.name> : 

<conceptRef.type.resolve> = 

self.<specificRef.name> -> select(x| 

x.oclIsKindOf(<conceptRef.type.resolve>)); 

helper context Java!Package def : ownedClasses : 

Sequence(Java!JavaClass) = 

self.ownedElements -> select(x| 

x.oclIsKindOf(Java!JavaClass)); 

Template 

Exemplary Instantiation 

of Template 
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Future Work 

 Handling Heterogeneities between Classes 

 So far, only differences between attributes and references have been 

considered 

 Definition of virtual classes by means of helper functions would be 

required to consider also differences between classes 

 Reusing Transformations for Specific Target MMs 

 So far, only adaptations of the source MM have been performed 

 This is, since it is not possible to query the target model to provide virtual 

features 

 Specialization of Constraints 

 Also constraints on the concept MMs have to be translated for specific 

MMs 
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Thank you for your attention! 
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http://www.modeltransformation.net 
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