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Motivation (1/2) 

 Model transformations are key enablers for multi-paradigm modeling 

 However: little support for reusing transformations in different 

contexts, since they are tightly coupled to metamodels 
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Approach Motivation Future Work Heterogeneities 

rule UMLClass2Class  { 

  from uClass : UML!UMLClass 

  to class : CD!Class ( 

    name <- uClass.name, 

    superClass <- uClass.superClass 

  ) 

} 
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? 
How to reuse the transformation 

in a different context? 

Idea: Generic model transformations 

(i.e., decoupling of transformation logic 

and MMs) as a reuse mechanism 

Adapters 
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binding UMLClass2Component{ 

  class UMLClass to Component 

    feature UMLClass.name  

    is Component.name 

    feature UMLClass.superClass 

    is Component.allInstances() ->  

       select(c | c.subComponents ->  

       includes(self)) -> first(); 

} 

Motivation (2/2) 
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rule UMLClass2Class  { 

  from uClass : UML!UMLClass 

  to class : CD!Class ( 

    name <- uClass.name, 

    superClass <- uClass.superClass 

  ) 

} 
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Generic Model Transformation 

rule Component2JavaClass  { 

  from component : C!Component 

  to jClass : Java!JavaClass ( 

    name <- component.name, 

    extends <-  

        C!Component.allInstances() -> 

        select(c |c.subComponents -> 

        includes(self)) -> first() 

  ) 

} 

Binding Model 

Binding Class2JavaClass{ 

  class Class to JavaClass 

    feature Class.name  

    is JavaClass.name 

    feature Class.superClass 

    is JavaClass.extends 

} 

Binding Model 

Recurring heterogeneities 

must be resolved manually 

1 Adaptations are 

scattered across 

transformation logic 

2 

Complex 

HOT 
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Specific Model Transformation 

Classes, attributes, and references 

of the concept MMs are variables 

that are bound to the specific MMs 

Approach Motivation Future Work Heterogeneities Adapters 
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Approach 

 Problem 1: Recurring heterogeneities must be resolved manually 

 For resolving common heterogeneities, a library of generic and 

composable adapters in the form of templates is proposed 

 Adapters realize a virtual view on the specific MM, which provide 

required features of the concept MM  a subtype relationship is 

established 

 Selection of adapters happens automatically by analyzing bindings of 

the binding model 

 Problem 2: Adaptations are scattered across transformation logic 

 Adapters are realized by means of helper functions 

 Consequently, adapters are added to the transformation, but not 

intermingled with the transformation 

 Problem 3: Complex HOT 

 Templates exist for adapters; these may be easily instantiated, without 

the need of analyzing and rewriting existing transformation code 
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Question 1: 

What are common heterogeneities? 

Approach Motivation Future Work Heterogeneities Adapters 
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Exemplary Heterogeneities between MMs 
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Concept MM Package.ownedClasses 

refers to a more specific class 
than Package.ownedElements 

1 

UMLClass.superClasses allows for multiple 

inheritance, whereas JavaClass.extends 

allows for single inheritance, only 

2 

UMLClass.ownedProperties points to 

inverse direction of Attribute.class 
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The attribute 
Property.primitiveType is 

realized by an additional class 
SimpleType 

4 

How to obtain a systematic 

set of heterogeneities? 

Approach Motivation Future Work Heterogeneities Adapters 
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Analysis of Heterogeneity #3 
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Heterogeneities arise due to different 

values of Ecore meta-features! 
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Systematic Set of Heterogeneities 
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Approach 

 Problem 1: Recurring heterogeneities must be resolved manually 

 For resolving common heterogeneities, a library of generic and 

composable adapters in the form of templates is proposed 

 Adapters realize a virtual view on the specific MM, which provide 

required features of the concept MM  a subtype relationship is 

established 

 Selection of adapters happens automatically by analyzing bindings of 

the binding model 

 Problem 2: Adaptations are scattered across transformation logic 

 Adapters are realized by means of helper functions 

 Consequently, adapters are added to the transformation, but not 

intermingled with the transformation 

 Problem 3: Complex HOT 

 Templates exist for adapters; these may be easily instantiated, without 

the need of analyzing and rewriting existing transformation code 
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Question 2: 

How to resolve the heterogenties by adapters? 

Approach Motivation Future Work Heterogeneities Adapters 
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Exemplary Adapter by Means of a Helper Function 

helper context Java!JavaClass def : ownedProperties : 

Sequence(Java!Attribute) = Java!Attribute.allInstances()->   

                                   select(a| a.class = self); 
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Specific MM is 

extended by a 

virtual feature 

Virtual feature is realized by a helper function 

If a generic transformation accesses 
JavaClass.ownedProperties on 

the specific MM  an error arises! 

Now, the access to 
JavaClass.ownedProperties 

is enabled! 
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Subtype Relationship 
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Approach 

 Problem 1: Recurring heterogeneities must be resolved manually 

 For resolving common heterogeneities, a library of generic and 

composable adapters in the form of templates is proposed 

 Adapters realize a virtual view on the specific MM, which provide 

required features of the concept MM  a subtype relationship is 

established 

 Selection of adapters happens automatically by analyzing bindings of 

the binding model 

 Problem 2: Adaptations are scattered across transformation logic 

 Adapters are realized by means of helper functions 

 Consequently, adapters are added to the transformation, but not 

intermingled with the transformation 

 Problem 3: Complex HOT 

 Templates exist for adapters; these may be easily instantiated, without 

the need of analyzing and rewriting existing transformation code 
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Question 3: 

How does the binding model look like? 
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Binding Model 
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1 binding UML2Java{ 

2  class Package to Package 

3    feature Package.ownedClasses  

4    is Package.ownedElements 

5  class UMLClass to JavaClass 

6    feature UMLClass.superClasses 

7    is JavaClass.extends 

8    feature UMLClass.ownedProperties 

9    is Attribute.class 

10  class Property to Attribute 

11   feature Property.primitiveType 

12   is Attribute.simpleType.name 

13 } 

1:1 bindings suffice! 

1 

2 

3 

4 
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Adaptation Process 
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transformation by (1) rewriting class 

names and (2) adding adapters 
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Generic Model 

Transformation Adaptation Process 
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Template for Resolving Target Difference 
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helper context <specificRef.owner> def : <conceptRef.name> : 

<conceptRef.type.resolve> = 

self.<specificRef.name> -> select(x| 

x.oclIsKindOf(<conceptRef.type.resolve>)); 

helper context Java!Package def : ownedClasses : 

Sequence(Java!JavaClass) = 

self.ownedElements -> select(x| 

x.oclIsKindOf(Java!JavaClass)); 

Template 

Exemplary Instantiation 

of Template 
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Future Work 

 Handling Heterogeneities between Classes 

 So far, only differences between attributes and references have been 

considered 

 Definition of virtual classes by means of helper functions would be 

required to consider also differences between classes 

 Reusing Transformations for Specific Target MMs 

 So far, only adaptations of the source MM have been performed 

 This is, since it is not possible to query the target model to provide virtual 

features 

 Specialization of Constraints 

 Also constraints on the concept MMs have to be translated for specific 

MMs 
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Thank you for your attention! 
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http://www.modeltransformation.net 
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