
Business Informatics Group

Institute of Software Technology and Interactive Systems

Vienna University of Technology

Favoritenstraße 9-11/188-3, 1040 Vienna, Austria

phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896

office@big.tuwien.ac.at, www.big.tuwien.ac.at

Reusing Model Transformations across

Heterogeneous Metamodels*

M. Wimmer, A. Kusel, W. Retschitzegger, J. Schönböck,

W. Schwinger, J. S. Cuadrado, E. Guerra, and J. de Lara

5th International Workshop on Multi-Paradigm Modeling (MPM 2011)

Johannes Schönböck

 *This work has been partly funded by the Austrian Science Fund (FWF) under grant P21374-N13.

http://www.fwf.ac.at/index.asp

Motivation (1/2)

 Model transformations are key enablers for multi-paradigm modeling

 However: little support for reusing transformations in different

contexts, since they are tightly coupled to metamodels

2

Approach Motivation Future Work Heterogeneities

rule UMLClass2Class {

 from uClass : UML!UMLClass

 to class : CD!Class (

 name <- uClass.name,

 superClass <- uClass.superClass

)

}

Class

name:String

0..1

superClass

UMLClass

name:String

0..1

superClass

Source MM Target MM

Transformation in ATL Rules are bound to

conrete MM types

JavaClass

name:String

0..1

extends

Component

name:String

0..*

subComponents

New Source MM New Target MM

?
How to reuse the transformation

in a different context?

Idea: Generic model transformations

(i.e., decoupling of transformation logic

and MMs) as a reuse mechanism

Adapters

15

binding UMLClass2Component{

 class UMLClass to Component

 feature UMLClass.name

 is Component.name

 feature UMLClass.superClass

 is Component.allInstances() ->

 select(c | c.subComponents ->

 includes(self)) -> first();

}

Motivation (2/2)

3

rule UMLClass2Class {

 from uClass : UML!UMLClass

 to class : CD!Class (

 name <- uClass.name,

 superClass <- uClass.superClass

)

}

HOT
input input

input

output

Class

name:String

0..1

superClass

JavaClass

name:String

0..1

extends

Component

name:String

0..*

subComponents

UMLClass

name:String

0..1

superClass

Concept Source MM

Specific Source MM

Concept Target MM

Specific Target MM

Generic Model Transformation

rule Component2JavaClass {

 from component : C!Component

 to jClass : Java!JavaClass (

 name <- component.name,

 extends <-

 C!Component.allInstances() ->

 select(c |c.subComponents ->

 includes(self)) -> first()

)

}

Binding Model

Binding Class2JavaClass{

 class Class to JavaClass

 feature Class.name

 is JavaClass.name

 feature Class.superClass

 is JavaClass.extends

}

Binding Model

Recurring heterogeneities

must be resolved manually

1 Adaptations are

scattered across

transformation logic

2

Complex

HOT

3

Specific Model Transformation

Classes, attributes, and references

of the concept MMs are variables

that are bound to the specific MMs

Approach Motivation Future Work Heterogeneities Adapters

15

Approach

 Problem 1: Recurring heterogeneities must be resolved manually

 For resolving common heterogeneities, a library of generic and

composable adapters in the form of templates is proposed

 Adapters realize a virtual view on the specific MM, which provide

required features of the concept MM a subtype relationship is

established

 Selection of adapters happens automatically by analyzing bindings of

the binding model

 Problem 2: Adaptations are scattered across transformation logic

 Adapters are realized by means of helper functions

 Consequently, adapters are added to the transformation, but not

intermingled with the transformation

 Problem 3: Complex HOT

 Templates exist for adapters; these may be easily instantiated, without

the need of analyzing and rewriting existing transformation code

4

Question 1:

What are common heterogeneities?

Approach Motivation Future Work Heterogeneities Adapters

15

Exemplary Heterogeneities between MMs

5

NamedElement

name:String

Property

primitiveType:String

UMLClass
Package ownedClasses 0..*

0..* superClasses
ownedProperties

0..*

NamedElement
name:String

Specific MM

Attribute JavaClass Package

ownedElements 0..*

extends
class

1..1 SimpleType
0..1

simpleType

0..1

1

1

2

2

3

3

4

4

Concept MM Package.ownedClasses

refers to a more specific class
than Package.ownedElements

1

UMLClass.superClasses allows for multiple

inheritance, whereas JavaClass.extends

allows for single inheritance, only

2

UMLClass.ownedProperties points to

inverse direction of Attribute.class

3

The attribute
Property.primitiveType is

realized by an additional class
SimpleType

4

How to obtain a systematic

set of heterogeneities?

Approach Motivation Future Work Heterogeneities Adapters

15

Analysis of Heterogeneity #3

6

:EClass

name = ‘UMLClass‘

abstract = false

:EClass

name = ‘Property‘

abstract = false

name = ‘ownedProperties‘

ordered = true

lowerBound = 0

upperBound = -1

containment = true

:EReference

eStructFeatures

eRefType

:EClass

name = ‘Attribute‘

abstract = false

:EClass

name = ‘JavaClass‘

abstract = false

name = ‘class‘

ordered = true

lowerBound = 1

upperBound = 1

containment = false

:EReference

eStructFeatures

eRefType

Concept MM Specific MM

Property

UMLClass

ownedProperties

0..*

Attribute

JavaClass

class
1..1

3
3

C
o

n
c

re
te

 S
y
n

ta
x

A
b

s
tr

a
c

t
S

y
n

ta
x

Naming Diff

Naming Diff

Naming Diff
Containment

Diff

Multiplicity
Diff

Direction
Diff

Heterogeneities arise due to different

values of Ecore meta-features!

Approach Motivation Future Work Heterogeneities Adapters

15

Systematic Set of Heterogeneities

7

EClass

abstract : boolean

ENamedElement

name : String

EClassifier

…

ETypedElement

ordered : boolean

lowerBound : int

upperBound : int

eStructuralFeatures

0..*
EStructuralFeature

…

EReference

containment : boolean

EAttribute

eReferenceType
1..1

EDataType

eAttributeType

1..1 eSuperTypes

0..*

…

…

Naming Diff

Order Diff

Multiplicity Diff

Containment Diff

Datatype Diff

Context Diff Direction Diff

Target Diff

Multiplicity Diff

Approach Motivation Future Work Heterogeneities Adapters

15

Approach

 Problem 1: Recurring heterogeneities must be resolved manually

 For resolving common heterogeneities, a library of generic and

composable adapters in the form of templates is proposed

 Adapters realize a virtual view on the specific MM, which provide

required features of the concept MM a subtype relationship is

established

 Selection of adapters happens automatically by analyzing bindings of

the binding model

 Problem 2: Adaptations are scattered across transformation logic

 Adapters are realized by means of helper functions

 Consequently, adapters are added to the transformation, but not

intermingled with the transformation

 Problem 3: Complex HOT

 Templates exist for adapters; these may be easily instantiated, without

the need of analyzing and rewriting existing transformation code

8

Question 2:

How to resolve the heterogenties by adapters?

Approach Motivation Future Work Heterogeneities Adapters

15

Exemplary Adapter by Means of a Helper Function

helper context Java!JavaClass def : ownedProperties :

Sequence(Java!Attribute) = Java!Attribute.allInstances()->

 select(a| a.class = self);

9

Concept MM Specific MM

Property

UMLClass

ownedProperties

0..*

Attribute

JavaClass

class
1..1

3
3

C
o

n
c

re
te

 S
y
n

ta
x

ownedProperties
0..*

Specific MM is

extended by a

virtual feature

Virtual feature is realized by a helper function

If a generic transformation accesses
JavaClass.ownedProperties on

the specific MM an error arises!

Now, the access to
JavaClass.ownedProperties

is enabled!

Approach Motivation Future Work Heterogeneities Adapters

15

Subtype Relationship

10

NamedElement

name:String

Concept MM

Property

primitiveType:String

UMLClass Package
ownedClasses 0..*

0..*

superClasses
ownedProperties

0..*

NamedElement

name:String

Specific MM

Attribute

primitiveType:String

JavaClass Package

ownedElements

0..*

0..1

extends

class

1..1 SimpleType
0..1

simpleType

ownedClasses

0..* 0..*
superClasses

ownedProperties
0..*

Through the

specification of virtual

features, a subtype

relationship is

established

Approach Motivation Future Work Heterogeneities Adapters

15

Approach

 Problem 1: Recurring heterogeneities must be resolved manually

 For resolving common heterogeneities, a library of generic and

composable adapters in the form of templates is proposed

 Adapters realize a virtual view on the specific MM, which provide

required features of the concept MM a subtype relationship is

established

 Selection of adapters happens automatically by analyzing bindings of

the binding model

 Problem 2: Adaptations are scattered across transformation logic

 Adapters are realized by means of helper functions

 Consequently, adapters are added to the transformation, but not

intermingled with the transformation

 Problem 3: Complex HOT

 Templates exist for adapters; these may be easily instantiated, without

the need of analyzing and rewriting existing transformation code

11

Question 3:

How does the binding model look like?

Approach Motivation Future Work Heterogeneities Adapters

15

Binding Model

12

1 binding UML2Java{

2 class Package to Package

3 feature Package.ownedClasses

4 is Package.ownedElements

5 class UMLClass to JavaClass

6 feature UMLClass.superClasses

7 is JavaClass.extends

8 feature UMLClass.ownedProperties

9 is Attribute.class

10 class Property to Attribute

11 feature Property.primitiveType

12 is Attribute.simpleType.name

13 }

1:1 bindings suffice!

1

2

3

4

Approach Motivation Future Work Heterogeneities Adapters

15

Adaptation Process

13

Specific Model

Transformation

Heterogeneity

Reasoning

Concept MM

Specific MM

Binding

Model

Adapter

Templates

Hetero-

geneity

Model

Transformation

Adaptation

Comparison of meta-

features to calculate the

heterogeneity model

1 Adapt the generic model

transformation by (1) rewriting class

names and (2) adding adapters

2

Generic Model

Transformation Adaptation Process

Approach Motivation Future Work Heterogeneities Adapters

15

Template for Resolving Target Difference

14

helper context <specificRef.owner> def : <conceptRef.name> :

<conceptRef.type.resolve> =

self.<specificRef.name> -> select(x|

x.oclIsKindOf(<conceptRef.type.resolve>));

helper context Java!Package def : ownedClasses :

Sequence(Java!JavaClass) =

self.ownedElements -> select(x|

x.oclIsKindOf(Java!JavaClass));

Template

Exemplary Instantiation

of Template

Approach Motivation Future Work Heterogeneities Adapters

Future Work

 Handling Heterogeneities between Classes

 So far, only differences between attributes and references have been

considered

 Definition of virtual classes by means of helper functions would be

required to consider also differences between classes

 Reusing Transformations for Specific Target MMs

 So far, only adaptations of the source MM have been performed

 This is, since it is not possible to query the target model to provide virtual

features

 Specialization of Constraints

 Also constraints on the concept MMs have to be translated for specific

MMs

 15

Approach Motivation Future Work Heterogeneities Adapters

15

Thank you for your attention!

16

http://www.modeltransformation.net

15

