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Introduction 
• Continuous growth of software systems’ complexity demands 

adequate techniques to face their development 

• Model-driven engineering helps in tackling such complexity 
abstracting the real phenomena 

• A problem is typically decomposed into different viewpoints, 
each of which deals with a domain-specific perspective 

• Multi-view modeling mechanisms are usually distinguished 
between (ISO/IEC 42010): 

–  synthetic: each view is implemented as a distinct meta-model and 
the overall system is obtained as synthesis of the information 
carried by the different views 

– projective: views are virtual, i.e. made of selected concepts coming 

from a single meta-model by non-relevant details 



Motivation 
• The synthetic solution allows to accurately separate different concerns and 

express view-related concepts thanks to its radical multi-metamodel nature 
(+) 

• Adopting the synthetic solution raises problems mainly related to 
consistency management among different views (-) 

• Technically, the projective solution relies on a single underlying metamodel 
to ease the consistency management; changes are always operated on a 
single shared model (+) 

• The approach may become too restrictive because either the metamodel  is 
too generic or the views are too specific to be reused in several 
development contexts (-) 

• Moreover, the fact that generally the base metamodel does not have any 
concept of view embedded in it makes it difficult to express view-specific 
notions (e.g. editing rights for specific views) (-) 



Problem 
 

SO.. 
 Both approaches have advantages and drawbacks.. 

 

 

.. BUT 

What if we try to take the best of each by combining 
them? 



Contribution 
• Automated mechanism representing a hybrid technique for 

multi-view modeling 

• Based on the definition of multiple views as separate meta-
models (synthetic) 

• View meta-models are sub-portions of a single overall meta-
model (projective) 

• Changes are propagated from the modifying view to the 
overall model and from that propagated to the other views 

 

Goal: 
a good trade-off between synthetic and projective techniques for 

a more efficient and reusable multi-view modeling approach 



Multi-view Support 
• View definition: 

– view defined as custom selection of a subportion of the overall metamodel 

– support for any number of views 

– support for overlapping views (different views can be built on top of (partially) 
overlapping sub-metamodels) 

– management of well-formedness issues 

• Editing facilities: 
– each view should carry with it a set of modification rights on its elements 

coherent with the perspective it pertains to 

– support of customized view editor  

• Synchronization management: 
– transparent merge of separate views, meaning that consistency management 

across views should happen without any end-user intervention 

– non-blocking management of concurrent manipulations for overlapping views 
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Views Creation Wizard 
• View properties selection: general information needed for creating the view, 

storing it and generating a related Eclipse editor model 
 

• View elements selection: the elements constituting the overall meta-model are 
shown and the developer is able to select each meta-element that is going to be 
part of the new view 
 

• Unique identifiers selection: in order to allow synchronization for each selected 
meta-class a non-empty set of its meta-attributes and/or meta-references must 
be selected to act as its unique identifier 
 

• Editing rights selection: once the view is populated, desired editing rights are 
selected for each of the selected elements among two possibilities: 
– Read-only 
– Read/write 

 

• Further elements may appear automatically selected by the consistency 
checking engine to ensure the creation of a view whose models will be still 
consistent and conforming to the initial meta-model 



The Synchronization Process 
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Limitations 
• Basic set of view customization features 

 

• Element identification mechanism by means of unique 
identifiers as set of meta-attributes/meta-references 

 

• Conflicts that may arise from concurrent modifications in 
overlapping views 



Conclusion 
• Approach for hybrid support to multi-view modeling 

through a combination of synthetic and projective 
approaches 

• Definition of a set of basic needs for view customization 

• Implementation of view creation wizard and 
synchronization mechanisms as well as generation of 
view-customized Eclipse editor 

• Proposed solution based on EMF but approach 
independent of the modeling technology 



Future Work 
• Extension of view customization features 

• Full automation of the process 

• Validation of the proposed technique against a properly-
sized case study to verify feasibility and analyze possible 
scalability issues 

• Enhancement of the element identification mechanism 

• Resolution of conflicts that may arise from concurrent 
modifications in overlapping views by means of 
suggested quick-fixes (when applicable) 

 



Thanks for Your attention.. 
 

Questions and/or comments? 
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