
A hybrid approach for multi-view modeling

Antonio Cicchetti, Federico Ciccozzi, Thomas Leveque

School of Innovation, Design and Engineering

Mälardalen University, MRTC

Västerås, Sweden

Multi-Paradigm Modeling 2011 – Wellington, New Zealand

Agenda
• Introduction

• Motivation

• Contribution

• Proposed Approach

• Conclusion

• Future Work

Introduction
• Continuous growth of software systems’ complexity demands

adequate techniques to face their development

• Model-driven engineering helps in tackling such complexity
abstracting the real phenomena

• A problem is typically decomposed into different viewpoints,
each of which deals with a domain-specific perspective

• Multi-view modeling mechanisms are usually distinguished
between (ISO/IEC 42010):

– synthetic: each view is implemented as a distinct meta-model and
the overall system is obtained as synthesis of the information
carried by the different views

– projective: views are virtual, i.e. made of selected concepts coming

from a single meta-model by non-relevant details

Motivation
• The synthetic solution allows to accurately separate different concerns and

express view-related concepts thanks to its radical multi-metamodel nature
(+)

• Adopting the synthetic solution raises problems mainly related to
consistency management among different views (-)

• Technically, the projective solution relies on a single underlying metamodel
to ease the consistency management; changes are always operated on a
single shared model (+)

• The approach may become too restrictive because either the metamodel is
too generic or the views are too specific to be reused in several
development contexts (-)

• Moreover, the fact that generally the base metamodel does not have any
concept of view embedded in it makes it difficult to express view-specific
notions (e.g. editing rights for specific views) (-)

Problem

SO..
 Both approaches have advantages and drawbacks..

.. BUT

What if we try to take the best of each by combining
them?

Contribution
• Automated mechanism representing a hybrid technique for

multi-view modeling

• Based on the definition of multiple views as separate meta-
models (synthetic)

• View meta-models are sub-portions of a single overall meta-
model (projective)

• Changes are propagated from the modifying view to the
overall model and from that propagated to the other views

Goal:
a good trade-off between synthetic and projective techniques for

a more efficient and reusable multi-view modeling approach

Multi-view Support
• View definition:

– view defined as custom selection of a subportion of the overall metamodel

– support for any number of views

– support for overlapping views (different views can be built on top of (partially)
overlapping sub-metamodels)

– management of well-formedness issues

• Editing facilities:
– each view should carry with it a set of modification rights on its elements

coherent with the perspective it pertains to

– support of customized view editor

• Synchronization management:
– transparent merge of separate views, meaning that consistency management

across views should happen without any end-user intervention

– non-blocking management of concurrent manipulations for overlapping views

Views Creation

Original
Metamodel

View1
Metamodel

View2
Metamodel

ViewN
Metamodel

View1
Model

View2
Model

ViewM
Model

Original
Model

conforms to

view creation

Views Creation Wizard
• View properties selection: general information needed for creating the view,

storing it and generating a related Eclipse editor model

• View elements selection: the elements constituting the overall meta-model are
shown and the developer is able to select each meta-element that is going to be
part of the new view

• Unique identifiers selection: in order to allow synchronization for each selected
meta-class a non-empty set of its meta-attributes and/or meta-references must
be selected to act as its unique identifier

• Editing rights selection: once the view is populated, desired editing rights are
selected for each of the selected elements among two possibilities:
– Read-only
– Read/write

• Further elements may appear automatically selected by the consistency
checking engine to ensure the creation of a view whose models will be still
consistent and conforming to the initial meta-model

The Synchronization Process

transforms

Metamodel

Original Model

Updated Model

Difference Model

Conforms To

Modification

Additional Input

Model Transformation

View 1 (Teacher) Metamodel View 2 (Student) Metamodel Original Metamodel

Metamodel

Original Model

Updated Model

Difference Model

Conforms To

Modification

Additional Input

Model Transformation

View 1 Metamodel View 2 Metamodel Original Metamodel

transforms

Metamodel

Original Model

Updated Model

Difference Model

Conforms To

Modification

Additional Input

Model Transformation

View 1 Metamodel View 2 Metamodel Original Metamodel

transforms

Metamodel

Original Model

Updated Model

Difference Model

Conforms To

Modification

Additional Input

Model Transformation

View 1 Metamodel View 2 Metamodel Original Metamodel

transforms

Metamodel

Original Model

Updated Model

Difference Model

Conforms To

Modification

Additional Input

Model Transformation

View 1 Metamodel View 2 Metamodel Original Metamodel

transforms

Metamodel

Original Model

Updated Model

Difference Model

Conforms To

Modification

Additional Input

Model Transformation

View 1 Metamodel View 2 Metamodel Original Metamodel

transforms

Metamodel

Original Model

Updated Model

Difference Model

Conforms To

Modification

Additional Input

Model Transformation

View 1 Metamodel View 2 Metamodel Original Metamodel

Limitations
• Basic set of view customization features

• Element identification mechanism by means of unique
identifiers as set of meta-attributes/meta-references

• Conflicts that may arise from concurrent modifications in
overlapping views

Conclusion
• Approach for hybrid support to multi-view modeling

through a combination of synthetic and projective
approaches

• Definition of a set of basic needs for view customization

• Implementation of view creation wizard and
synchronization mechanisms as well as generation of
view-customized Eclipse editor

• Proposed solution based on EMF but approach
independent of the modeling technology

Future Work
• Extension of view customization features

• Full automation of the process

• Validation of the proposed technique against a properly-
sized case study to verify feasibility and analyze possible
scalability issues

• Enhancement of the element identification mechanism

• Resolution of conflicts that may arise from concurrent
modifications in overlapping views by means of
suggested quick-fixes (when applicable)

Thanks for Your attention..

Questions and/or comments?

Synchronization Process

View Editor

 Model

metamodel model

Original

 Metamodel

W
iz

a
rd

View

 Metamodel

M
2

M

transforms references transformation

Synchronization Process

View Editor

 Model

Eclipse View

Editor Plugin

Code

metamodel model

Original

 Metamodel

W
iz

a
rd

View

 Metamodel

M
2

M

transforms

M2T

references transformation

Synchronization Process

View Editor

 Model

Eclipse View

Editor Plugin

Code

metamodel model

Original

 Metamodel

Original Diff

 Metamodel M2M

W
iz

a
rd

View

 Metamodel
View Diff

 Metamodel

M
2

M

transforms

M2M

M2T

references transformation

Synchronization Process

View Editor

 Model

Eclipse View

Editor Plugin

Code

metamodel model

Original

 Metamodel

Original Diff

 Metamodel M2M

W
iz

a
rd

View

 Metamodel
View Diff

 Metamodel

M
2

M

transforms

M2M

M2T

references transformation

ComputeDiff

+ ApplyDiff

 Transformations

ComputeDiff

+ ApplyDiff

 Transformations H-O

H-O

Synchronization Process

View Editor

 Model

Eclipse View

Editor Plugin

Code

metamodel model

Original

 Metamodel

Original Diff

 Metamodel M2M

W
iz

a
rd

View

 Metamodel
View Diff

 Metamodel

M
2

M

transforms

M2M

M2T

references

H-O

transformation

TranslateDiffModel

 Transformation

ComputeDiff

+ ApplyDiff

 Transformations

H-O

ComputeDiff

+ ApplyDiff

 Transformations

Synchronization Process

View Editor

 Model

Eclipse View

Editor Plugin

Code

metamodel model

Original

 Metamodel

Original Diff

 Metamodel M2M

W
iz

a
rd

View

 Metamodel
View Diff

 Metamodel

M
2

M

transforms

M2M

M2T

references

H-O

transformation

TranslateDiffModel

 Transformation

ComputeDiff

+ ApplyDiff

 Transformations

H-O

ComputeDiff

+ ApplyDiff

 Transformations

