
Electronic Communications of the EASST
Volume 42 (2011)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2011)

Model Based Engineering for the support of Models of Computation:
The Cometa Approach

Papa Issa Diallo, Joel Champeau, Vincent Leilde

12 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Model Based Engineering for the support of Models of
Computation:

The Cometa Approach

Papa Issa Diallo1, Joel Champeau2∗, Vincent Leilde3†

1 papa issa.diallo@ensta-bretagne.fr, 2 joel.champeau@ensta-bretagne.fr, 3

vincent.leilde@ensta-bretagne.fr
ENSTA Bretagne, MBE Research Departement Brest, France

Abstract: The development of Real Time Embedded Systems (RTES) increasingly
requires the integration of several parts with different purposes. Consequently, the
heterogeneous appearance of such systems creates a need to manage their growing
complexity mainly due to the difficulty to interconnect the different parts compos-
ing them. Model Based Engineering (MBE) has significantly participated in recent
decades to find solutions in terms of methodologies and technical support tailored to
the design of RTES. Indeed, several models are used to represent different aspects
of the system. However, the interconnection of different modeling paradigms is still
a difficult challenge. The handling of such problems requires a clear definition of
the execution and interconnection semantics of the different models composing the
system. Indeed, the abstraction of the execution semantics of machines (Models of
Computation) can highlight properties for the whole systems execution. In this pa-
per, we propose an approach that captures these semantics at the earliest modeling
phases with the aim of exhibiting properties that ease the design space exploration
and performance analysis of systems. Our approach extends the Modeling and Anal-
ysis of Real Time Embedded Systems profile (MARTE) by providing means to ex-
press communication semantics of models. We also review existing approaches for
defining such execution semantics.

Keywords: RTES, MBE, MoC (Model of Computation), Cometa, MARTE.

1 Introduction

Significant improvements have been made for embedded systems in their ability to integrate new
technologies. Indeed, they are increasingly able to integrate elements from different areas of
expertise, that are suitable for various treatments. In particular, the System on Chip (SoC) archi-
tectures are more complex and heterogeneous due to the integration of several components such
as micro controllers, Digital Signal Processing, memories, Field-Programmable Gate Array.
Thus, one current challenge of the Electronic System Level (ESL) community is to provide ef-
fective methodologies and techniques based on appropriate formalisms in order to reduce the

∗
†

1 / 12 Volume 42 (2011)

mailto:papa_issa.diallo@ensta-bretagne.fr
mailto:joel.champeau@ensta-bretagne.fr
mailto:vincent.leilde@ensta-bretagne.fr


Model Based Engineering for the support of Models of Computation:

The Cometa Approach

increasing complexity of systems. To this purpose, techniques such as the exploration of archi-
tecture, reuse of IP (Intellectual Properties) and the separation of concerns are favored by the
new design approaches.
Elsewhere, the realization of the system on several levels of abstraction reduces the design com-
plexity, and also allows making property analysis and performance analysis at the earliest possi-
ble time.
Model-Based Engineering offers solutions to address these issues. For example, the separation
of concerns as recommended by the Model-Driven Architecture (MDA) [OMG03] specification
separates the representation of application aspects from platform aspects which also eases the
architecture exploration and reuse of application parts.
However, the MDA solution has not succeeded completely to address these issues due to short-
comings regarding the expression of semantics. Indeed, few tools or existing languages specify
clearly the semantics of communication and synchronization of the various modules forming the
system. These semantic aspects are also called Models of Computation. In fact, having such
semantic information is mandatory for the coherent conception of the system, since it brings
details on the different execution semantics of the system parts and the communication and syn-
chronization techniques used for their interaction.
In this paper, we propose an approach that aims to offer solutions to capture the semantics of
existing MoCs but also to define new semantics. Specifically, we propose the use of models for
defining communication and synchronization of system parts. We propose an extension of the
MARTE profile [OMG07a] with focus on the explicit definition of communication and concur-
rency.
The paper is organized as follows: the second section presents the background of our approach,
in Section 3 we present our contribution in two parts. First we talk about solutions in terms of
MoC expressiveness, and we discuss the heterogeneous combination of semantics with linkage
to other approaches. In Section 4 we present the related works to position our work, and finally
we conclude by presenting the perspectives of our work.

2 Background and Motivation

The growing complexity of RTES induces new challenges for their realization. Indeed, the ESL
community has to find new solutions to handle the realization complexity of the new generation
of RTES that combines various business domains. To this end, raising the abstraction level of
current languages and the early validation of properties can be part of the solution.
On the one hand, efforts are currently made by the ESL community in order to raise the level
of abstraction of current implementation languages in order to perform property analysis at the
earliest possible time and reduce complexity of system design. This approach reduces also the
existing gap with the teams in charge of high-level system design. For instance, languages like
SystemC [HV07] define a system level language Transaction Level Modeling (TLM) for high-
level system design.
On the other hand, there are several new techniques and methodologies developed by the MBE
community to tackle issues related to the modeling of the different parts of a system. For in-
stance, Domain-Specific Languages (DSLs) are focused on architectural and specific semantic

Volume 42 (2011) 2 / 12



ECEASST

aspects that help describe how a system (or sub-system) is realized; they allow defining all the
needed concepts and how these concepts are associated to match the objective of a part of the
system.
Unfortunately, only few solutions address the issue of heterogeneity. Even though the known
semantics are well-tooled currently (data flow systems [LP02], continuous time based systems
[Liu98], or discrete event based systems [Mul99]), their combination is still a difficult task, re-
sulting often in emergent behaviors.
One solution according to MBE is to model systems on several levels of abstraction while per-
forming analysis at each level of abstraction. Moreover, several studies, including the project
MOPCOM / SOC [Kou09], aim to define several levels of abstraction in the development pro-
cess, where design and analysis can be performed. Indeed, from a high-level of abstraction,
the platform system designers “virtualize” the hardware platform by describing the underlying
topology of such architectures, enriched with communication semantics and the level of concur-
rency.
Indeed, one needs to explain and/or resolve the interconnections of the different modules. To
this end, one should focus on the structural and semantic aspects of the whole system. Several
systems are based on hierarchical communicating components. These components are often seen
as concurrent entities. The way the different components of the system are interconnected is de-
fined using connectors, ports and interfaces.
Many languages can be used with such methodology. For instance, the MARTE profile [OMG07b]
allows specifying the concurrency among different components by defining the concept of “RTU-
nit”, the communication among components is described from the use of “RTConnector”. Sys-
tems Modeling Language (SysML) [OMG10] is a profile that is often combined with MARTE
for system modeling. With SysML, systems can be described based on hierarchical blocks (com-
ponents), defining the application model.
Other approaches, propose Architecture Description Language (ADL) semantics for the descrip-
tion of architecture with specific semantics.
However, most of the known approaches and languages have shortcomings in regards to the
communication and synchronization expressiveness, mostly lacking flexibility to express those
concerns. For instance in MARTE, how the communication between modules should be executed
is defined implicitly, and does not have the flexibility to express the communication scheme dif-
ferently. In SysML such information is not present and has to be imported.
Our contribution is motivated by the need to provide additional solutions for the modeling of
highly parallel and heterogeneous embedded systems. More precisely, we recall possible solu-
tions for high-level analysis and execution of systems.
In this paper, we propose a metamodel that aims to provide two main solutions. On the one
hand, we propose a component-based architecture which is similar to other component-based
approaches in the MBE community. On the other hand we present a way to capture and add
semantics to those structural elements in order to ease their execution within a given execution
environment. Plus, we define possibilities to combine meaningful MoCs and discuss irrelevant
MoC interconnections. The second objective of this paper is to show the possibility to transform
such semantics to equivalent standard semantics in the literature.

3 / 12 Volume 42 (2011)



Model Based Engineering for the support of Models of Computation:

The Cometa Approach

3 Contribution

In this section, we present our contribution by defining the key concepts of the language Cometa,
which permits to capture semantics to support heterogeneous multi-MoCs system models. Then,
we argue the possible representation of the adaptation among different Models of Computation.
Finally, we present an example application of our approach.
The language Cometa addresses two aspects: The representation of system architecture, and the
capture of MoC semantics. Regarding architectural concerns, the Cometa metamodel defines
concepts similar to any ADL: components, connectors, ports, interfaces. Those elements are
basic building blocks to any system assembly. Figure 1 shows an excerpt of the language defining
the main concepts for modeling of the architecture:

Figure 1: Excerpt of Cometa Metamodel for Architecture Description

• A MoCComponent: represents an executable concurrent entity providing / requiring ser-
vices from the external world through ports and connectors. A MoCComponent can be of
different nature (Basic, Composite, and Translator). The Basic Component represents any
entity that has a specific behavior; the behaviors defined inside a Basic Component are
executed sequentially, while at a same level, different Basic Components can be executed
concurrently. The content of a Basic Component can be programmed functions, state
machines or any behavior defined with a dedicated language from a domain. Compos-
ite Components are elements executed concurrently and highlight architectural concerns.
They can help to define structured architectures with several levels of containment. In

Volume 42 (2011) 4 / 12



ECEASST

other words, it can contain other Composite Components, Basic Components, Translator
Components, Ports or Connectors. A Translator Component is an element that adapts any
semantics from one domain to another domain whenever such translation is possible.

• A MoCPort: represents an interaction point of a MoCComponent. Depending on the do-
main, the MoCPort can have different meanings (reference, data store, etc.). To offer more
flexibility to the definition of Ports, we add the possibility to a MoCPort to eventually have
behaviors. Such definition helps to have more control on the ports behaviors. This can
be useful if one wishes to define synchronous or asynchronous communications. Ports
can also have interfaces that provide or require services. The defined services are strongly
related to the domain for which these ports are defined.

• A MoCConnector: represents a connection between two concurrent entities. Depending on
the domain, the MoCConnector can have different meanings (data path, synchronization
point in time, etc.). We also add the possibility to add behaviors to MoCConnectors with
the same aim as in the ports to facilitate expressiveness of synchronization.

• A MoCDomain: represents a concept that helps to capture the semantics of a specific
Model of Computation and helps to link architectural elements to specific semantics spec-
ifications. The captured semantics can be bound to the architecture via a MoCDomain.
The MoC domain also has the Scheduling policy for a specific MoC, or architectural ele-
ment (parallel or sequential). Each MoCComponent has an attached MoCDomain.

The defined concepts enable the design of a virtual platform that can support semantics. In our
approach we give flexibility to the designers to describe their own semantics, and the possibility
to test several semantics in order to find the ones that are efficient to express their needs. Each
of the above described concepts relies on a domain or (MoCDomain) which provides a specific
semantics. The Semantics of a specific MoC are defined according to the four axes defined by
the Rugby conceptual model [Jan04]. In our metamodel those axes are called “schemes”. Thus
we define:

• A Behavioral Scheme : it defines the kind of supported behaviors depending on the domain
(Discrete Behavior, Continuous Behavior). Currently, only Discrete Behavior is addressed
by the metamodel and is captured with the help of Finite State Machines. For instance, for
control concerns, different functions or components can be activated (or fired) by events
sending from a defined control element. They can also be used for communication con-
cerns like the representation of synchronization.

• A Time Scheme: defines the underlying model of time (causal, discrete, continuous, etc.).
For the moment, we just rely on the MARTE model of time which defines discrete time,
and continuous time (as a dense discrete time). We abstract in the metamodel the concepts
for defining time structures and the concepts for time access (Logical Clock, Chronometric
Clock, etc). Currently, more efforts are needed to specify more precisely these concepts.

5 / 12 Volume 42 (2011)



Model Based Engineering for the support of Models of Computation:

The Cometa Approach

• A Data Scheme: it defines the kind of data manipulated (abstract data types, bit vectors,
etc.). Depending on the domain, data can be represented differently. In Cometa we have
classified and reified data into four types (abstract data types for the definition of high-
level data types such as Integer or String; the physical data types gathering the definition
of physical types such as weight, speed, volume; the signals and the bit vectors generally
representing wires in a physical platform. We assume that these types can be the bases to
create any types of data. We can also add new concepts to describe more complex data
types.).

• A communicationScheme (cf. figure 2): it defines concepts for the description of the
communication elements such as ports and connectors. The main idea of this scheme is to
specialize these elements for a specific domain through the description of their behaviors
(according to a behavior described in the behavior scheme), and through the description
of the services they require or provide (described from interfaces) and finally through the
definition of extra parameters that offer flexibility to match any specific MoC.

Figure 2: Excerpt of Cometa Metamodel for the Communication Scheme Description

In our approach, several exercises have been successfully done to express known MoCs se-
mantics like Kahn Process Network (KPN) or Communicating Sequential Process (CSP) or Syn-
chronous Data Flow (SDF). Furthermore, we allow the user to define their own MoCs. We have
described two known MoCs: the CSP [Hoa83] and KPN [Neu04] with Cometa.
In summary, one can describe the architecture of components that are concurrent by definition.
It is possible to define two types of architectures: architecture based on hierarchical composition
of MoCs but also architecture where the execution semantics are defined in a flat way in the ports
and connectors.
However, the contents of each Basic Component are executed sequentially. The rules of commu-
nication and synchronization are defined using ports and connectors defining behaviors (FSM)

Volume 42 (2011) 6 / 12



ECEASST

and interfaces.
The composition of semantics is done by the addition of Translators that complement a source
MoCDomain with missing properties to comply with a target MoCDomain. In the case where
there is a hierarchy of MoCs, the Translator can tailor the source MoCDomain by adding to the
various Schemes the missing information to have a complete semantic description of the target
MoC. Therefore, to ease the representation of MoC Combination, we rely on the classification
made in Ptolemy that highlights the possible semantics combination between directors into tree
degree of compatibility (loosest, loose, and tight)[GBA+07]. The translation must take into ac-
count the level of compatibility of the source and target semantics. A first rule being that source
semantics must have a less restrictive level of compatibility than the target semantics. With this
classification, we define the possible translations.
If one is interested in an adaptation of a flat architecture, the execution semantics applies at the
ports and connectors. Thus, the translator modifies the behavior and interfaces of the elements
of communication to suit the communication elements of the target MoCDomain.
For example, for the translation of semantics from a set of components communicating asyn-
chronously to a component that is governed by a semantics Synchronous Data Flow, parameters
such as the rate of consumption and production are added at the ports and interfaces, then the
behavior of the port is modified to behave corresponding to SDF semantics.
In the next section we present an example use of the Cometa principles to express communication
aspects. In this example, we consider two applications that send or receive information without
any assumption on the nature of communication. If one wishes to have synchronous communi-
cation between these two elements, it is possible to capture such semantics with an FSM that we
can add to the connector or in the ports. In our example we will define synchronization between
the two applications using the CSP semantics. In the CSP MoC, each time a producer emits data,
it locks until this data has been consumed by the consumer. At the same time, when a consumer
requires data, it locks until this data has been produced by the producer. In this synchronous
model, both read and write operations are blocking. Figure 3 shows the state machine for such
semantics.

The two applications are included in Basic Components linked with ports and connectors that
have the interface information and the above defined state machine. The whole description is
then transformed to corresponding elements within an execution environment like Rhapsody.

In Rhapsody, figure 4 shows the different exchanges made between the two applications. Ap-
plication 1 shows a request from application 2 that reaches a ”waitingForWrite” status. Once the
data is sent by application 1, the synchronization is made and an acknowledgment is sent to the
applications to free the connector for a new synchronization. In this example we can see that
specific events have been defined in the ports to communicate with an external element.

4 Related Works

In section 2, we presented some of the major issues related to MoCs that we try to solve. In the
following paragraphs, we present some of the main contributions achieving the same goal. This
presentation will give to the readers insights to position our work as well as relevant comparison

7 / 12 Volume 42 (2011)



Model Based Engineering for the support of Models of Computation:

The Cometa Approach

Figure 3: Definition of Synchronous Communication with FSM

points for discussion. Indeed the approaches presented in section 2 have several drawbacks. In
particular, they do not favor a clear separation of concerns and they do not provide means to
cope with heterogeneity of RTES. To this end, several languages have been proposed to tackle
issues related to systems heterogeneity. Those languages aim to provide an unified framework
for modeling and simulating heterogeneous systems. Among existing approaches aiming to pro-
vide a unified framework for heterogeneous specification, the Ptolemy project [EJL+03] is the
first to provide a complete component-based framework for heterogeneous systems design and
analysis. A design in Ptolemy is made of concurrent atomic or composite entities, called Actor,
communicating through communication entities called Port (Interface). Viewing the system as a
structure of actors emphasizes its causal structure as well as its concurrent activities along with
their communication and data dependencies. In contrast to OOP, where objects communicate
through method calls transferring control to each other’s code, actors may or may not be related
to the flow of control. In this approach, heterogeneity is handled through specification of Models
of Computation (MoC). A MoC is associated with a domain and defines specific Directors that
establish execution rules for actors (Scheduling and synchronization) of the same hierarchical
level. Such an approach favors their reuse in different contexts. Unfortunately, introducing new
domains in Ptolemy has limitations as it requires a good knowledge of the underlying language
(Java). Moreover, heterogeneity in Ptolemy is handled through hierarchy, which imposes strong
architectural constraints. Besides from being a component-based approach, Cometa defines a
flat architecture model and emphasizes the use of translator elements to interconnect different
MoCs. Also, the ESL (Electronic System Level) community has proposed a language to raise
designs at the system level: the SystemC language, standardized by the IEEE (IEEE1666-2005).
The goal of this language is to provide a means to build a system incrementally. Each incre-
ment is captured by models integrating more details related to specific requirements about com-
putation, communication, data and time. At each level of abstraction, the system is specified
through interconnected components and verified by specific kinds of analysis. Such an approach
allows a better design space exploration avoiding errors related to early partitioning between

Volume 42 (2011) 8 / 12



ECEASST

Figure 4: Application model and Simulation Results in Rhapsody

9 / 12 Volume 42 (2011)



Model Based Engineering for the support of Models of Computation:

The Cometa Approach

software and hardware parts [Arn00]. In SystemC, a system is made of modules (Black-box
IPs) and processes communicating through channels. The core of the language provides features
required to model heterogeneous systems, e.g., primitive channels, events or time notification.
In [Ghe06], authors present an extension of the language called TLM (Transaction Level Mod-
eling) which aims to provide high-level libraries of interfaces and channels to raise levels of
abstraction. But according to [HV07], the TLM library does not provide the complete and un-
ambiguous communications semantics required by many MoCs and their integration. To address
this issue, they provide then additional facilities to cover syntactical and semantic deficiencies of
the SystemC core language through their HetSC (Heterogeneous SystemC) extension. Cometa
approach is similar to the TLM approach by providing library of MoC elements to a given plat-
form; in addition it offers the flexibility to define new MoCs. We are also wishing to be able
to generate SystemC code in future works. In [BBS06], the authors address the meaningful
composition of heterogeneous components to ensure their correct inter-operation. The spectrum
of component types they address is very wide: it goes from fully synchronized components to
completely asynchronous components. They propose a framework for modeling heterogeneous
real-time components called BIP (Behavior, Interaction and Priority). The Modelica language
[Tilel]has been proposed to model and simulate complex and heterogeneous systems. It is an
object-oriented non-proprietary language providing special constructs supporting hybrid systems
design and simulation. It supports modeling of continuous, discrete or hybrid time-based sys-
tems. In this approach, behaviors can be captured by Algebraic differential Equation (ACausal
modeling) or Algorithms (Sequence of statements). In [BBHP06], authors suggest an extension
of UML 2.0 for hybrid systems modeling. They state, that even if UML 2.0 provides language
constructs for a large variety of systems and behaviors,element for hybrid systems modeling
have not been considered. For example, real or rational numbers, essential in RTES designs,
are not established as primitive types. They provide then a dedicated profile called HybridUML
Profile for UML 2.0. This proposition aims to fill the lack of UML 2.0 to specify hybrid systems
with unambiguous meaning. They also refine the UML Time model in order to model dense-
time. The building block for describing systems architecture is introduced under the notion of
Agent refined into Primitive Agent and Composite Agent. In [BH08], authors address the simu-
lation of multi-formalism models. They propose a framework called ModHel’X that eases the
combination of multiple modeling languages in models. Their approach relies on concepts of
component-oriented and hierarchical modeling. In ModHel’X, components are reified under the
notion of Block. This approach distinguishes three kinds of blocks: the Atomic Block (which
encapsulates business behaviors), The Composite Block (which encapsulates instances of atomic
blocks), and the Interface Block (which acts as an adapter among heterogeneous blocks). Like
for the Ptolemy approach from which it is inspired, the hierarchy is used as a mean to combine
the heterogeneous parts of the whole system. Then, the meaningful simulation of such hetero-
geneous system can be achieved on the providing of a semantic adaptation mechanism as well
as an execution engine able to support interpretation of multi-formalism models. Cometa also
proposes the use of semantic adaptation mechanism, but our approach is different since we do
not define a system fully based on the hierarchy of MoCs.

Volume 42 (2011) 10 / 12



ECEASST

5 Conclusion and Future Works

With the rapid evolution of techniques and technologies, the ESL community is becoming in-
creasingly aware of the need to use high level abstractions for the design and analysis of RTES.
Unfortunatly, the MBE community has failed to provide means to handle the inherent hetero-
geneity of the system under study, which hampers its adoption by the ESL commununity. Then,
our work contributes to foster the usage of modeling for RTES design and analysis. To this
purpose, we have presented in this paper an extension of the new UML for MARTE profile al-
lowing the capture of the heterogeneity that characterizes the actual RTES. Our work contributes
to provide reusable libraries of the most commonly used MoC patterns (KPN, CSP, SDF, etc.).
Although we have successfully applied our approach onto a real industrial case, our future works
aims to generalize our approach on wider range of MoC families (discrete / continuous, timed /
untimed) as well as providing a more formal framework with clarification on the combination of
MoCs.

Bibliography

[Arn00] G. Arnout. SystemC standard. In ASP-DAC ’00: Proceedings of the 2000 Asia and
South Pacific Design Automation Conference. Pp. 573–578. ACM, New York, NY,
USA, 2000.
doi:http://doi.acm.org/10.1145/368434.368808

[BBHP06] K. Berkenktter, S. Bisanz, U. Hannemann, J. Peleska. The HybridUML profile for
UML 2.0. Int. J. Softw. Tools Technol. Transf. 8(2):167–176, 2006.
doi:http://dx.doi.org/10.1007/s10009-005-0211-z

[BBS06] A. Basu, M. Bozga, J. Sifakis. Modeling Heterogeneous Real-time Components
in BIP. In SEFM ’06: Proceedings of the Fourth IEEE International Conference
on Software Engineering and Formal Methods. Pp. 3–12. IEEE Computer Society,
Washington, DC, USA, 2006.
doi:http://dx.doi.org/10.1109/SEFM.2006.27

[BH08] F. Boulanger, C. Hardebolle. Simulation of Multi-Formalism Models with Mod-
Hel’X. In ICST ’08: Proceedings of the 2008 International Conference on Software
Testing, Verification, and Validation. Pp. 318–327. IEEE Computer Society, Wash-
ington, DC, USA, 2008.
doi:http://dx.doi.org/10.1109/ICST.2008.15

[EJL+03] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, Y. Xiong. Tam-
ing heterogeneity - the Ptolemy approach. Proceedings of the IEEE 91(1):127–144,
January 2003.
http://chess.eecs.berkeley.edu/pubs/488.html

[GBA+07] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, C. Goble. Composing Different Mod-
els of Computation in Kepler and Ptolemy II. In Proceedings of the 7th international

11 / 12 Volume 42 (2011)

http://dx.doi.org/http://doi.acm.org/10.1145/368434.368808
http://dx.doi.org/http://dx.doi.org/10.1007/s10009-005-0211-z
http://dx.doi.org/http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/http://dx.doi.org/10.1109/ICST.2008.15
http://chess.eecs.berkeley.edu/pubs/488.html


Model Based Engineering for the support of Models of Computation:

The Cometa Approach

conference on Computational Science, Part III: ICCS 2007. ICCS ’07, pp. 182–190.
Springer-Verlag, Berlin, Heidelberg, 2007.

[Ghe06] F. Ghenassia. Transaction-Level Modeling with Systemc: Tlm Concepts and Ap-
plications for Embedded Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[Hoa83] C. A. R. Hoare. Communicating sequential processes. Commun. ACM 26:100–106,
January 1983.
doi:http://doi.acm.org/10.1145/357980.358021
http://doi.acm.org/10.1145/357980.358021

[HV07] F. Herrera, E. Villar. A framework for heterogeneous specification and design of
electronic embedded systems in SystemC. ACM Trans. Des. Autom. Electron. Syst.
12(3):1–31, 2007.
doi:http://doi.acm.org/10.1145/1255456.1255459

[Jan04] A. Jantsch. Modeling Embedded Systems and SoC’s. Systems on Silicon, 2004.

[Kou09] J. C. D. A. P. S. Koudri, Ali. MoPCoM/MARTE Process Applied To A Cognitive
Radio System Design And Analysis. In Model Driven Architecture - Foundations
and Applications. 2009.

[Liu98] J. Liu. Continuous Time and Mixed-Signal Simulation in Ptolemy II. Technical re-
port, Dept. of EECS, University of California, Berkeley, CA, 1998.

[LP02] E. A. Lee, T. M. Parks. Readings in hardware/software co-design. In De Micheli
et al. (eds.). Chapter Dataflow process networks, pp. 59–85. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2002.
http://portal.acm.org/citation.cfm?id=567003.567010

[Mul99] L. Muliadi. DISCRETE EVENT. Technical report, Dept. of EECS, University of
California, Berkeley, CA, 1999.

[Neu04] S. Neuendorffer. PN Domain. Design, 2004.

[OMG03] OMG. MDA Guide Version 1.0.1. Technical report, Object Management Group,
2003.

[OMG07a] OMG. UML Profile for MARTE, Beta 1. Technical report ptc/07-08-04, Object
Management Group, 2007.

[OMG07b] OMG. UML Profile for MARTE, Beta 1. 2007.
http://www.omg.org/omgmarte/Documents/Specifications/08-06-09.pdf

[OMG10] OMG. SysML 1.1. Technical report, OMG, 2010.

[Tilel] M. Tiller. Introduction to Physical Modeling with Modelica. Springer, Tiller,
Michael.

Volume 42 (2011) 12 / 12

http://dx.doi.org/http://doi.acm.org/10.1145/357980.358021
http://doi.acm.org/10.1145/357980.358021
http://dx.doi.org/http://doi.acm.org/10.1145/1255456.1255459
http://portal.acm.org/citation.cfm?id=567003.567010
http://www.omg.org/omgmarte/Documents/Specifications/08-06-09.pdf

	Introduction
	Background and Motivation
	Contribution
	Related Works
	Conclusion and Future Works

