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Abstract: To manage the complex engineering information for real-time systems,
the system under development can be described in a high-level architecture descrip-
tion language. This provides a basis for deployment space exploration. Subse-
quently the high-level information is used to create a low level implementation.
However, in this mapping a lot of platform dependent choices have to be made and
their consequences cannot be easily predicted. In this paper we present an approach
to the automatic exploration of the deployment space based on platform-based de-
sign. All possible solutions of a deployment step are generated using a refinement
transformation while the non-confirming results are pruned as early as possible us-
ing a simulation model or analytical method. We validate the feasibility of our
approach by deploying part of an automotive power window optimized for its real-
time behaviour using an AUTOSAR-like meta-model. First results are promising
and show that the optimal solution can be found with our approach.
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1 Introduction

Embedded systems often need to comply with particular requirements such as real-time execu-
tion deadlines, reliability and low power consumption. On the other hand, hardware and software
platform resources are often limited, mainly due to cost reasons. An embedded systems platform
is therefore often restricted in performance, memory, number of hardware interfaces, communi-
cation bandwidth, and so on. Building software applications on these restricted resources is not
straightforward.

The software development process for these kinds of systems needs particular attention to deal
with platform restrictions. During application design, the developer needs to make deployment
choices in such a way that they match to the available platform resources, or even optimize their
usage. Examples of these choices range from the mapping of software components to hardware
platforms, though deployment decisions are typically based on engineering experience, on anal-
ysis, or on conducted experiments such as simulation or rapid prototyping. The optimization of
the usage of platform resources will lead to an efficient use of the platform.

This paper will focus on the use of model transformations during the design process, with the
goal of automatic deployment space exploration. During the deployment process, application
models evolve from a high abstraction level down to a complete design. To use these application
models for deployment optimization, it is often necessary to transform them into simulation or
analytical models that allow estimation of the effect of certain resource limitations.

To illustrate the use of transformations in this process, we will follow the example of the
power window. This application controls the up- and downward movements of a car window,
and includes security issues such as the avoidance of any object being trapped by a closing
window. The power window will be optimized for its real-time behaviour.

The rest of the paper is organised as follows: Section 2 gives a small introduction to the
AUTOSAR platform and meta-model. Afterwards the work related to this work is stated in
section 3. We elaborate our approach in section 4 and validate the feasibility of our method
by deploying a part of the power window application in section 5. In section 6 we discuss our
approach and identify the open issues. Finally section 7 concludes and states our future work.

2 Background

Dealing with the growing complexity of embedded systems demands for adequate support of
development mechanisms; in fact, their usage often involves critical real-life aspects and a fail-
ure can cause catastrophic consequences. The automotive domain is not an exception, given the
amount of electronically managed functionalities, ranging from infotainment to power window,
cruise control, and braking system. As a consequence, several approaches emerged aiming at
reducing problem intricacy by means of modelling and automation techniques, such as EAST-
ADL [CFJ"08] and AUTOSAR [AUTO08]. Nonetheless, the criticality and intrinsic complexity
of automotive embedded systems make the development process still a time-consuming activ-
ity. Notably, in the deployment phase the developer has to provide platform details in terms of
parameters, that will later influence the final product in terms of its properties, such as safety,
performances[SD07] We will use AUTOSAR as the framework for bulldlng our apphcatlons

Volume MPM 201 1 «

) 2/12



E

abstract the hardware.

The functional model of an AUTOSAR application consists of a set of atomic software compo-
nents. These components can interact with each other using ports. The service or data provided
or required by a port are defined by its inferface. The interface defines the semantics of the trans-
mission and can either be client-server or sender-receiver. Each software component defines its
behaviour by means of a set of runnables. A runnable is a function that can be executed in re-
sponse to events, for example a timing event. Figure 1 shows the application model of a power
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Figure 1: The software model of a power window application, showing the components and the
interfaces for interaction

To make software components independent from the hardware, containing multiple Electronic
Control Units (ECUs), the interface to this hardware must be standardized. This is done using
the AUTOSAR basic software, shown in Figure 2.

This middleware consists of a real-time op-
erating system based on the OSEK/VDX stan-
dard [OSEOS5]. The operating system sched-
ules tasks in a fixed priority way. Since
the concept of a task is not known at the
functional level, the components must first
be mapped to the processors and then the
runnables must be mapped onto tasks. The
mapping to tasks is not necessarily 1-to-1.
The rules for mapping runnables to tasks are
defined in the run-time environment (RTE)
specification, available on [AUT11]. All tasks
have to be assigned a priority to be scheduled
by the operating system.

The middleware also contains services for
sending and receiving messages on a commu-

Application Layer
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Communication
Drivers

pController
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Drivers

Memory Drivers

pController

nication bus. These are composed of signals
that originate in the application layer. Com-
munication signals and messages have cer-
tain configurable properties, such as the sig-
nal transfer property and the message trans-

Figure 2: Structure of the AUTOSAR basic soft-
ware, the run-time environment and the applica-
tion layer
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mission mode, that have an impact on the timing behaviour of the application. More information
about the configuration parameters in the communication stack can be found in the AUTOSAR
communication specifications available on [AUT11].

On the communication abstraction and driver layer, the most common automotive buses, for
example the Controller Area Network (CAN), are currently supported by the AUTOSAR com-
munication stack. These also have many configuration parameters, such as the priority of the
frames containing the message, that impact the real-time behaviour of the full system.

The RTE is used as a glue between the functional components and the AUTOSAR basic soft-
ware. It is responsible for storing the internal messages using buffers or forwarding the external
messages to the communication stack. It also activates the runnables when an event occurs.

It becomes evident that taking into account all the variability illustrated so far results in a huge
amount of possible deployment combinations, which has to be typically managed by some do-
main expert. Such a task would greatly benefit of automation support, especially in determining
available deployment alternatives at a given development stage.

3 Related work

Performance analysis is crucial for the deployment of safe and cost-effective software-intensive
systems. In [BDISO04] a review of research in the field of model-based performance prediction
is presented. The techniques are based on simulation models, process algebra, Petri nets and
stochastic processes. An example of the discussed methods close to our research is architecture-
based performance analysis [SG98] where a performance model, based on queuing networks, is
derived from a system described in UML. For the design and deployment of software components
Palladio [BKR09] offers a meta-model with annotations for extra-functional properties. The
model can be transformed into both an analytical and a simulation model. Kugele et al. uses a

similar approach by annotating a component-based meta-model with extra-functional properties,

though part of the deployment is automated using an integer linear programming approach.

In the last decade platform-based design [KNRS00, SMO1] received a lot of attention. Platform-
based design introduces clear abstraction levels and allows for separation of concerns between
the refinement of the functional architecture specification and the abstractions of possible im-
plementations. Di Natale and Sangiovanni-Vincentelli adapted the platform-based technique in
[SDO7] to the development of automotive embedded systems. The definitions of the models and
architecture solutions, involved in the AUTOSAR process, are isolated from the details while
still allowing enough information for the accurate prediction of the implementation’s properties.
The process is driven by a what-if analysis.

Popovici et al. developed an exploration technique based on platform-based design for the
deployment of multimedia applications on MPSoC architectures in [PGR " 08]. The technique al-
lows software code generation, software development platform generation and simulation model
generation. This allows easy experimentation with different mappings of the software on the
architecture. Different levels of abstraction are defined where the generation, simulation and
validation of the software components can take place.

Another approach, DECOS [OPH06, HSS™07] (dependable embedded components and sys-
tems), uses model-based development techniques to develop complex distributed embedded sys-

CII he DECOS architecture enables the transition from a federated to a more integrated
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distributed architecture, integrating multiple subsystems onto a single platform. Because of this,
the platform choices are less open and depend on a time-triggered communication bus. The
developer is assisted during the deployment by a commercial tool, TTTech toolsuite, for schedu-
lability analysis.

Besides these performance analysis methods and deployment space exploration techniques
there are some other automatic methods for local optimization. These methods optimize a certain
part of the deployment space. Some use heuristic search methods, like simulated annealing
[PEP02], genetic algorithms [Sin07] or use a linear programming approach [ZZDS07] or SAT-
based approach [MHO06].

Schatz et al. developed a rule-based transformation technique [SHL10] based on Prolog to
generate the full deployment space of an embedded system.

Finally, The DESERT tool-suite [NSKBO03] provides a framework for design space explo-
ration. It allows an automated search for designs that meet structural requirements. Possible
solutions are coded in a binary encoding that can generate all possibilities. A pruning tool is
used to allow the user to select the designs that meet the requirements. These can then be recon-
structed by decoding the selected design.

4 Incremental refinement of deployment decisions

Full deployment space

Horizontal Transformation + A
Simulate/Analyse ® ¢ o 0 o

@ 0 ¢ ® 060

5 5 NN AN N
o Simulate/AnaIyse .. .. .. .. .. ..

Refinement Transformations
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Figure 3: Approach

Our approach, shown in Figure 3, is based on the key concepts of multi-paradigm modelling:
Model everything at the right level of abstraction using the correct formalism [VDO02]. For this
purpose two types of transformations are used:

e Refinement Transformations: Deployment can be viewed as a set of transformations since
we iteratively add knowledge about the platform into the model. By using these transfor-
mations we could generate all possible solutions allowed within the meta-model. Since

R . 11 vield multiple soluti it will losi i |
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space. Therefore, it is important that non-conforming solutions are pruned as early as pos-
sible. To avoid this problem, multiple layers of abstraction are defined where high-level
estimators can be found to check the generated partial solutions.

e Horizontal Transformations: The model is transformed to another formalism on the same
abstraction level and evaluated using a simulation model or an analytical method.

The solution space is limited with every abstraction layer since the pruned branches are not
further explored. The choice of analysis method needs to match the system properties that are
optimized. Here, we are interested in the performance of the system. For the deployment explo-
ration in the context of real-time behaviour we identified three abstraction levels. The defined
levels are pragmatically chosen so they correspond to the current analytical and simulation meth-
ods available in the automotive industry. For each of these levels we describe what information
has to be available and what method is used to acquire the high-level estimator.

The first defined level abstracts the system architecture. Here, the software components of the
application are mapped to a specific hardware component. In case of multiple components, a bus
connects these components. Since all information about timing of the triggers and execution time
is known at this point, we can use a simple bin packing check to ensure that no single component
or bus is overused at this level of abstraction.

The next abstraction level concentrates on the services provided by the communication stack
and operating system. The runnables are grouped into tasks and they are given a priority. The
same is done for the signals that are to be transmitted on the bus. These are grouped into messages
and given a priority for the arbitration on the bus. Furthermore, signals and messages are given
their transmission mode and property. At this abstraction level all information for schedulability
analysis is present. This means that solutions that cannot make their end-to-end deadlines are
automatically pruned.

Finally, the application is fully mapped to the hardware platform by defining hardware buffers
for the reception and transmission of messages. The drivers and interfaces of the communica-
tion stack are configured and software buffers are defined. Some hardware-specific options are
also configured. The solutions are checked for their real-time behaviour under the influence of
buffering. We use a DEVS simulation model presented in [DVR ™ 11] for this purpose. Solutions
that have lost messages and/or that cannot make their end-to-end deadlines under the influence
of buffering are pruned in this step.

4.1 Refinement transformations

The exploration of the solution space is made by means of the Janus Transformation Language
(JTL) [CDEP11], which is a bidirectional model transformation language based on Answer-Set
Programming (ASP) [GL88]. The transformation engine is based on a generation mechanism
that first expands the set of possible solutions based on mapping rules and then refines such a set
by applying constraints on the derived target models, such as metamodel conformance rules and
additional desired characteristics'. In our case, solution space exploration can be reduced to an
endogenous model transformation, where the source and target models both conform to the same
metamodel. Then, starting from a certain source model containing an incomplete deployment at a

' JTL has a number of interesting features that go far beyond the scope of this paper. The interested reader can start
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given development stage, it is possible to derive target models representing available deployment
alternatives for the next abstraction level. For instance, it is possible to specify that if a boolean
flag is present in the source model, then two different target models will be generated, one for
the flag set to true and one for flag set to false. Similarly, it is possible to generate multiple
assignment possibilities of hardware buffers to handlers.

4.2 Horizontal transformations and pruning

It is our goal to pick the deployment configuration that promises desirable extra-functional be-
haviour. For each possible configuration that was calculated in the previous step, we predict and
analyse the behaviour of the system. For each system configuration we build a custom simula-
tor, by automatically transforming the configuration into an executable simulation or analysable
model.

5 Case study

To show that the technique and technology is feasible, we apply it to part of the deployment of
an automotive power window. In our case study, the first two abstraction levels in the process are
finished and we start with models abstracted at the service level.

5.1 The power window

The software model of our power window case study is based on [PM04]. The application
controls the window on the passenger side, though both passenger and driver are allowed to open
or close the window. When an object is present while closing the window, it will automatically
detect this and lower the window.

Figure 1 shows the application model of the power window application. The functional model
of an AUTOSAR based power window consists of 5 atomic software components. All compo-
nents contain a single runnable except for the Driver component containing 3 runnables, each
for reading a single sensor. The runnables are triggered using a timing event every millisecond.
Table 1 shows the execution timings of the different components on a 32-bit platform.

Runnables and states in runnables
Control Driver 8.96 us
Control _Passenger 5.01 us
Sensor_Load 81.2 us
Logic 39.7 us
DC_Motor 2.0 us

Table 1: Execution times of the power window components
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starting from a single model that has been checked by schedulability analysis. The model’s
variation points contain:

e Transmit and Receive buffers: The number of hardware buffers in the CAN controller are
bounded. Therefore they must be distributed between transmission and reception buffers.
Once they are partitioned, the frames need to be assigned to a hardware buffer. Hardware
buffers can be overwritten if a message has not been transmitted yet. This makes this a
crucial parameter in the real-time behaviour of the whole system.

e CAN interface module software buffering: This flag enables or disables the use of software
buffers in the CAN interface basic software module. If software buffering is allowed, the
message can be stored in software when the hardware buffer is full.

o CAN Transmit Cancellation: The transmit cancellation flag enables the cancellation of a
message inside the CAN hardware buffer when a higher priority message is available. This
could impact the real-time behaviour of the system due to message that are transmitted in
a different order.

e CAN Multiplexing: The CAN hardware normally checks the buffers in a linear fashion,
transmitting the first buffer that is not empty. By allowing the multiplexing option, the
buffers of CAN become a priority queue. It will always transmit the highest priority mes-
sage first.

5.2 Implementation of the refinement operations

Based on the variabilities described above, a first transformation has been written that explores
the solution space without any additional constraints. Given the number of variables and the
corresponding possible evaluations, the execution yielded 192 solutions. However, as previously
discussed it is possible to add some domain knowledge in the form of new constraints to the
JTL transformation to narrow down the solution space. For instance, ECUs not transmitting any
frames make the CAN cancellation, multiplexing, and software buffering flags obsolete. There-
fore, the transformation specification has been enriched by adding such domain knowledge. Be-
cause the source model contained an ECU transmitting no frames (i.e., Passenger), the solution
space has been cut down to 24 possible solutions. In Figure 4, an excerpt of the deployment
alternatives generated by the JTL transformation is illustrated”. In particular, it is possible to see
a generated configuration as conforming to the abstract syntax exploited by JTL.

5.3 Implementation of the horizontal transformations

The solutions generated from the refinement transformation are transformed into a DEVS simu-
lation model, as described in [DVR " 11]. This model is a parametrized simulation model written
in Python. All control units, tasks, messages, buffers and their properties need to be specified in
Python and executed by the pyDEVS simulation engine.

We use the MOF Model to Text Language (MTL) [Omg08] defined by the OMG to transform
the configuration model into python source code for the DEVS simulation. MTL is a template-

2 The details of the JTL transformation for alternatives exploration can not be put in this paper due to space restric-
i e ] ader can access the implementation at http./itl. diunivag.it/download xplore
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Figure 4: An excerpt of deployment alternatives generated by the JTL transformation.

based transformation language, allowing us to output Python code and inject the configuration
parameters from the model. The result of this transformation is customized python code for the
DEVS simulation of the chosen configuration.

5.4 Results

The simulation calculated a metric based on the end-to-end latencies of the application, the
response times of the tasks and the idle-time of the processors. If messages were lost, the score
was reduced to zero.

Real-time behaviour of the PWC variants

15
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10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Figure 5: Real-time behaviour of the powerwindow case study (higher score is better)
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solutions did not make the deadline since there were messages lost during execution.

The scores of the variants are very close to each other, which is due to the small case study.
Since there are only 2 messages being transmitted, the effects of the multiplexing and cancella-
tion is minimal since no messages need cancelling or multiplexing.

6 Lesson learned and open issues

One general issue of exploration techniques is the explosion of the search space. Technically,
we can approach these problems by parallel computation, as the branches are independent. Each
alternative can be simulated and refined independently of the other alternatives. Today, the AU-
TOSAR developer needs to explore the whole solution space manually, or apply best practices.
Manual exploration is only possible for extremely small configuration spaces and best practices
might miss the optimal combinations of deployment choices. On the other hand, grouping the
deployment choices in different abstraction layers allows domain experts to focus on concepts
closer to their expertise.

Our current approach targets the optimization of one system property, e.g., performance. The
method could allow multi-objective optimization, allowing us to optimize for safety performance
and cost. It will be necessary to combine several parameter evaluations at the same level of ab-
straction, entailing trade-off computations. The developers must then choose between all pareto-
optimal solutions.

There is also a large amount of optimizations that can be added to this approach. If at a given
point the solution fails, that branch is not explored deeper. There could be conditions by which
further pruning of the solution space can be applied tracking the set of choices back in the tree
branches. Other optimizations could be added by domain experts, as we did. They can define
extra constraints to the exploration of the branches resulting in less solutions.

7 Conclusions and future directions

This paper proposed an automatic deployment exploration technique based on refinement trans-
formations and platform-based design. We have shown that the techniques and technologies
involved in the method are feasible. To illustrate the automatic exploration, we applied it to part
of an automotive power window. The solution is optimized for its real-time behaviour using an
AUTOSAR-like meta-model. First results are promising and show that the optimal solution can
be found with our approach.

We will continue this work in four branches: (a) We will extend the transformations to include
the 3 defined levels so a complete optimization of the power window can occur. (b) Other trade-
offs can be included in the process, for example memory and safety requirements. (c) The
power window is too small to verify whether the method is feasible for a real subsystem in the
automotive domain. Therefore, bigger case studies will be done to investigate this. (d) By doing
empirical research with this method, more domain knowledge could be discovered and included
in the method so more non-optimal solutions can be pruned earlier on.
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