
Electronic Communications of the EASST
Volume X (2011)

Proceedings of the
5th International Workshop on

Multi-Paradigm Modeling
(MPM 2011)

Semantic Adaptation using CCSL Clock Constraints

Frédéric Boulanger, Ayman Dogui, Cécile Hardebolle
Christophe Jacquet, Dominique Marcadet, Iuliana Prodan

12 pages

Guest Editors: Vasco Amaral, Peter Bunüs, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Semantic Adaptation using CCSL Clock Constraints

Frédéric Boulanger, Ayman Dogui, Cécile Hardebolle
Christophe Jacquet, Dominique Marcadet, Iuliana Prodan

Supelec Systems Sciences (E3S)
Computer Science Department

Gif-sur-Yvette, France
<firstname>.<lastname>@supelec.fr

Abstract: When different parts of a system depend on different technical domains,
the best suitable paradigm for modeling each part may differ. In this paper, we focus
on the semantic adaptation between parts of a model which use different modeling
paradigms in the context of model composition. We show how CCSL, a language
for defining constraints and relations on clocks, can be used to define this semantic
adaptation in a formal and modular way.

Keywords: Heterogeneous Modeling, Semantic Adaptation, Clock Calculus

1 Introduction

Models are the primary way of handling complexity by providing abstract representations of a
system, in which only the details that are useful for a given task are kept. When different parts
of a system depend on different technical domains (e.g. signal processing, automatic control,
power management, etc.), the best suitable modeling paradigm may differ for each part. A global
model of such a system is a heterogeneous model. Heterogeneous modeling, or multi-paradigm
modeling, is the research domain which aims at handling heterogeneous models.

This paper focuses on model composition, one of the existing multi-paradigm techniques [HB09].
The main principle of model composition is the “gluing” of model parts which are described using
different modeling languages. In model composition, the main difficulty is to define accurately
the semantic adaptation, i.e. the mechanism to "glue" together model parts that may have very
different semantics, in order to obtain a global heterogeneous model which is meaningful and can
therefore be used for early verification and validation in the design process.

We have developed a framework called ModHel’X for heterogeneous model composition.
ModHel’X is mainly aimed at model execution, i.e. techniques such as simulation or code
generation. We compose models in a hierarchical way.In [BHJM11], we have presented in
detail how hierarchical semantic adaptation between two models is handled in ModHel’X. One
drawback of our current approach is the lack of conciseness and the rather low level of abstraction
of the semantic adaptation descriptions. Inspired by the work by André et al. [MDAS10] on the
description of the semantics of dataflow models using MARTE’s Clock Constraint Specification
Language (CCSL), we propose an approach in which CCSL is used to model semantic adaptation.

The paper is organized as follows. After presenting ModHel’X in Section 2, we focus on
semantic adaptation in Section 3. An example illustrates the underlying concepts and underlines
relevant practical concerns. Then, Section 4 briefly introduces the basic concepts of CCSL needed

1 / 12 Volume X (2011)

mailto:<firstname>.<lastname>@supelec.fr

Semantic Adaptation using CCSL

A B

A B

MoC =
FSM

A B

MoC =
CSP

Figure 1: Models of computa-
tion.

Model

C

Composite

MoC

X

InterfaceBlock

YM

Model

C

Composite

MoC

A B

Figure 2: Model conforming to the meta-model of ModHel’X.

in Section 5 to describe the semantics of different models and the semantic adaptation between
them. We discuss the results in Section 6 and, after a comparison of our approach with related
work in Section 7, we conclude in Section 8.

2 ModHel’X, a framework for heterogeneous modeling

There are two main tasks to achieve in order to obtain a meaningful heterogeneous model using
model composition: (1) the precise definition of the semantics of each modeling paradigm; (2)
the precise definition of the semantic adaptation between parts of a model which use different
modeling paradigms. One method for defining the semantics of different modeling paradigms is to
use a common syntax or meta-model to describe the structure of models, and to attach semantics
to this structure using so-called models of computation (MoC). A model of computation is a set of
rules which define the nature of the components of a model and how their behaviors are combined
to produce the behavior of the model. For instance, Figure 1 shows that two models can share
the same structure (two components linked by two arrows) with different semantics: a finite state
machine or two communicating sequential processes, depending on the model of computation.

ModHel’X [BHJM11] is an experimental framework developed at Supélec in order to test new
ideas about the executable semantics of heterogeneous models. ModHel’X allows one to describe
the structure of heterogeneous models, to define models of computation for interpreting such
structures, and to define the semantic adaptation between heterogeneous parts of a model. For
this, ModHel’X relies on a meta-model which is the common syntax for all models, whatever
their semantics. Figure 2 presents an example model conforming to that meta-model. ModHel’X
uses Blocks as the basic unit of behavior. On the figure, X, Y, A and B are blocks. Blocks are
considered as black boxes, meaning that their behavior can only be observed at their interface
which is composed of Pins (black circles on the figure). The structure of a model is defined by
setting relations between pins, shown as solid arrows on the example.

Such a structure has a meaning only when it is associated to a model of computation. Therefore,
a ModHel’X model is composed not only of a structure (the Composite), but also of a Model of

Proc. MPM 2011 2 / 12

ECEASST

Computation (MoC) that allows the interpretation of the structure. In ModHel’X, interpreting a
model means executing the behavior described by that model according to the semantics of the
MoC. An execution is a series of observations of the model, each observation being computed
through the sequential observation of the blocks of the model using a fixed-point algorithm. The
observation of one block is called an update. Each MoC dictates the rules for scheduling the
update of the blocks of a model, for propagating values between blocks, and for determining when
the computation of the observation of the model is complete.

In ModHel’X, heterogeneity is handled through hierarchy: the behavior of some blocks can be
defined by another ModHel’X model. Such blocks are InterfaceBlocks. The model of computation
used in the model of the block (the inner MoC) can differ from the model of computation of
the model in which the interface block is used (the outer MoC). The dashed arrows between the
pins of the interface block and the pins of the internal model represent the semantic adaptation
between the two MoCs, which is realized by the interface block. As we have shown in [BHJM11],
three aspect must be considered in the semantic adaptation: the adaptation of data (data may not
have the same form in the inner and outer models), the adaptation of time (the notions of time and
the time scales may differ in the inner and outer models) and the adaptation of control (control
meaning the instants at which it is possible or necessary to communicate with a block through its
interface). In the next section, we illustrate these three aspects on an example.

3 Semantic Adaptation

In order to illustrate what semantic adaptation is, we present the example of a power window
system. The system, shown on Figure 3, is composed of a control switch, a controller board and
an electro-mechanical subsystem. These components communicate through a bus.

Since the communications on the bus can be modeled by events which carry some data and
occur at a given time, a “Discrete Events” (DE) [BLL+08] model of computation is suitable for
the top level of the hierarchical model of this system. The control switch is considered as an
atomic component which produces an event each time its position (neutral, up or down) changes.

The controller board is in charge of interpreting both the actions of the user on the switch and
the information from the electro-mechanical subsystem in order to drive the motor which makes
the window move. Advanced features of the window such as the “one touch” mode (i.e. the
automatic raising or lowering of the window after a brief pull or push of the control switch),
are realized by the controller. The behavior of this controller can naturally be described using a
finite state machine. However, the one touch mode feature implies timed behavior: it is activated
only when the control switch has been pulled or pushed during less than a given delay, 50ms for
instance. Therefore the state machine describing the behavior of the controller board includes
timed transitions, so the “Timed Finite State Machine” (TFSM) model of computation is used.

Finally, the electro-mechanical part is described as a periodically sampled system, and we
use a “Synchronous Data Flow” (SDF) [BLL+08] model of computation for it. In this model of
computation, blocks are data flow operators which consume and produce a fixed number of data
samples on their pins each time they are activated.

Once these choices are made, it is necessary to define how these three models, involving three
different models of computation, interact. In the following, we present each of the three aspects

3 / 12 Volume X (2011)

Semantic Adaptation using CCSL

bus

DE

TFSM
SDF

?
?

Figure 3: Structure of the Power Window Model.

TFSM

DE

SDF

T T

(2) (2) (2)

(1)

δ

(1′) (1)

(2′)

Figure 4: Adaptation of control.

to consider in semantic adaptation: the adaptation of data, of time and of control.

Semantic adaptation of data: The most obvious form of adaptation between models of com-
putation is adaptation of data. For instance, in the DE model of computation, blocks communicate
by posting events which are composed of a value and a timestamp. In the finite state machine, data
appears as symbols which can trigger transitions. In the data flow model of the electro-mechanical
part, data appears as periodic samples. The adaptation of data between DE and TFSM can be
performed by mapping symbols (processed by the TFSM) to event values. The adaptation of data
between DE and SDF is more complicated because SDF expects periodic samples while DE has
only sporadic events. A usual way to handle this it to interpret a DE event as a new value for the
next samples of a SDF signal, until a further event is received. Similarly, a change in a sequence
of SDF samples is converted into a DE event. The value carried by this event is easy to determine:
it is the new value of the SDF signal. However, it is also necessary to choose a timestamp for this
event because there is no explicit notion of time in SDF: time needs to be adapted too.

Semantic adaptation of time: When we generate a DE event to reflect a change of a SDF
signal, a possible timestamp for this event is the value of the current time in the DE model when
the SDF signal changes (the DE MoC maintains a current time at each instant of the model
execution [BLL+08]). Adaptation of time is more complex between the DE model and the timed
finite state machine. We can assume that the state machine reacts instantaneously to input symbols,
and also uses the current time in DE as timestamp for the events it produces. However, time can
also trigger transitions in the TFSM model. We recall here that the duration of a timed transition
is expressed on the time that is local to the TFSM model. Assuming that such a transition may
produce an event which will have to be adapted for the DE model, this duration must have a
correspondence in the DE time. If, for the sake of simplicity, we assume that time runs at the same
rate in the DE model and in the timed finite state machine, the adaptation of time between DE and
TFSM consists in reseting a timer each time a new state is entered, and therefore measuring the
time elapsed in DE since entering the state in the automaton.

Semantic adaptation of control: The semantic adaptation of control is the most complex type
of adaptation. Control is the set of instants at which a block should be able to take inputs into

Proc. MPM 2011 4 / 12

ECEASST

account and to produce outputs. The adaptation of control is related to the adaptation of data and
of time. Figure 4 illustrates the adaptation of control between DE, TFSM and SDF. On this figure,
the “ticks” on each timeline represent the instants at which each model is given control. The
arrows represent the adaptation of control performed between the models by the interface blocks.

For instance, when the DE model produces an input for the state machine, control should
be given to the TFSM model so that it can process the symbol and take a transition. This is
illustrated by arrows labelled (1) on the figure. Conversely, control is created in DE when the
state machine produces an output (arrow (1′)). If the state machine enters a state with an outgoing
timed transition, the state machine should receive control when the delay δ expires so that the
transition fires (red arrow labelled δ on the figure).

Regarding the DE/SDF adaptation, the sampled nature of SDF signals induces periodic control
for the model of the electro-mechanical part of the system (arrows labelled T at the bottom of the
figure). Since this model is embedded in the DE model, control in DE has a periodic part induced
by SDF. This is shown by arrows labelled (2) on Figure 4. But when some data is made available
by DE to the SDF model, this data must not create control directly in SDF but must be processed
at the next periodic control point, as shown by the wavy arrow labelled (2′) on Figure 4.

Adaption of control therefore depends on data and time, but it must also obey rules that
depend on the models of computation. It is therefore cumbersome to define this adaptation in
an operational way as we did until now in ModHel’X. In this paper, we present an approach in
which we declare all the constraints that apply on the control points of the different parts of a
model. Solving these constraints allows us to find the control points of the blocks in the model that
represent an execution according to the semantics of the MoC. This work has been inspired by the
work by André et al. [MDAS10] in which the Clock Constraints Specification Language (CCSL)
is used to define the SDF model of computation. Here, we use CCSL not only to define models of
computation, but also to model the semantic adaptation between them. In the following section,
we briefly introduce the basic elements of the CCSL language that are necessary to understand
how we model MoCs and semantic adaptation between them (see section 5).

4 The Clock Constraint Specification Language (CCSL)

CCSL (Clock Constraint Specification Language) is a declarative language annexed to the specific-
ation of the MARTE UML Profile (Modeling and Analysis of Real Time and Embedded systems).
CCSL is based on the notion of clock which represents a set of discrete event occurrences, called
instants. A clock can be either chronometric or logical. Chronometric clocks are a mean to model
“physical time” and to measure durations between two instants. Logical clocks represent discrete
time in which instants are occurrences of any kind of logical event. Each occurrence of the event
is represented by a tick on the corresponding clock. The distance between two ticks is measured
in terms of ticks and has no meaning by itself (no link with “physical durations”).

CCSL offers means to specify constraints between clocks. Clock constraints can be classified
into four categories: synchronous, asynchronous, mixed and non-functional contraints. Synchron-
ous clock constraints are based on the concept of coincidence. Examples are subclocking and
discretization. A subclocking constraint such as A isSubClockOf B; is an order-preserving map-
ping of each instant of the subclock A with an instant from the superclock B. The discretizedBy

5 / 12 Volume X (2011)

Semantic Adaptation using CCSL

A

B

C

A ≺ B

A � C

1 2 3

1 2 3

1 2 3

Figure 5: Example of strict and non-strict
precedence.

A

B

A union B

A inter B

A upto B

1 2 3

1 2

1 2 3 4

1

1 2

Figure 6: Example of union, intersection and
upto clock expressions.

constraint uses IdealClk to define a chronometric clock. IdealClk is a dense clock defined by
MARTE. For instance, Clock C = IdealClk discretizedBy 0.001; specifies a discrete chrono-
metric clock with a period of 0.001 second = 1 ms. Asynchronous clock constraints specify
precedence relationships (≺ or �) between all the respective instants of two clocks (see Fig-
ure 5). In a mixed clock constraint, coincidence and precedence are combined. For example the
constraint Clock C = A delayedFor n on B; specifies a clock C that has all its instants coincident
with the nth instant of B that follows an instant of A.

There is also a series of operators to define new clocks. The boolean operators union and inter

act onto pairs of respective samples (see Figure 6). A upto B defines a clock that ticks each time A
ticks up to the first tick of B; from this tick on, it does not tick anymore.

The TimeSquare environment, an Eclipse plug-in, may be used to calculate solutions to a set of
CCSL constraints. A graphical interface displays waveforms for the solution clocks, as well as
the constraints between the instants of different clocks.

5 Semantic Adaptation using CCSL

This section describes our general methodology for describing MoCs and semantic adaptation
between them using CCSL. The methodology is illustrated on the power window example
introduced in Section 3. Figure 7 shows how this system is modeled using ModHel’X. For the
sake of simplicity, only part of the behavior of the window controller is taken into account, the
half that controls upward movements, including the one touch mode. The other half is symmetric.
For the same reasons, the SDF model of the electromechanical part is considered as a black box.

The control switch is an elementary DE block that models the user’s actions. The outputs
outUUp and outUNeutral correspond respectively to the user pulling and releasing the button.

The controller is described using a timed finite state machine, with initial state Stop. When
the automaton receives the evtUUp event indicating that the user wants to raise the window, it
produces the evtWUp event to start the window motor and goes to the Up state. If the automaton
receives the evtUNeutral event before 50 units of time, thereby indicating that the user has released
the button to activate the one touch mode, it goes to the UpAuto state. Else, and after 50 units of
time, it goes to the UpManu state. The controller produces the evtWStop when the user releases the
button in manual mode, when the user pulls the button in one touch mode, or when the window is
fully closed (evtWEnd events produced by the electro-mechanical subsystem represent end-stops).

Proc. MPM 2011 6 / 12

ECEASST

DE

!"#$%

!"#$$%& '()$%&
*+#$$%&

'(,$%&

'(,-#!%&

&'()*'++,*%-!"#$%&'($)*+(,.%/01)23% 41(5'0%

!"#,.(/&

!"#)$%&

!"#)-#!%&

'().(/&

*+#,.(/&

!"#$0*"#123& '()0*"#123&

+#$0"#123&

*+#,$%&

*+#,-#!%&

-#!%& $%&

$%&

42("&

$%&

5"#!&

+#$0"#123&!&*+#,.(/&

6&*+#,-#!%&

+#$$%&6&+#,$%&

27*189:;<=&

+#$0"#123&*+#$$%&!&*+#,.(/&

6&*+#,-#!%&

TFSM

Figure 7: Simplified ModHel’X model of the power window system.

In the following sections, we describe how models governed by the TFSM and DE MoCs may
be described using CCSL. Then we present the semantic adaptation between them.

5.1 Describing TFSM using CCSL

This section describes our methodology for translating a TFSM model into a CCSL specification.
In CCSL, all clocks must be subclocks of a root clock. We choose to explicitly define a

chronometric clock called chronoTFSM. This clock serves several purposes: it measures the
durations of the timed transitions, the input events occur at instants of this clock (they are
subclocks of it), and therefore the state machine reacts at instants of this clock.

Simulating the behavior of a state machine implies the memorization of its current state. For
this purpose we associate two clocks to each state S: enterS which ticks when a transition leading
to S fires, and inS which ticks at each instant when the state machine is in state S. enterS is the
condition for entering state S; inS is a memory of the current state.Therefore inS must tick at each
instant after enterS, until a transition leading to another state fires, i.e. when one of the enterSi’
ticks, where {Si’} is the set of states accessible from S by one outgoing transition. This gives:
inS = sustain enterS upto ((enterS1’ union enterS2’) ... union enterSn’)

To define the enterS family of clocks, let us describe first when transitions are followed. A
non-timed transition T that goes from S upon receipt of E is fired when the current state was S at
the last tick, and E occurs. This provides a clock associated with T:
T = E inter (inS delayedFor 1 on chronoTFSM);

For a timed transition T that fires from state S after d units of time, we use the same method,
except that the firing event is derived from enterS: T = (enterS delayedFor d on chronoTFSM)

inter (inS delayedFor 1 on chronoTFSM);

We are now able to define the enterS clock of a state S, with incoming transitions T1, . . . ,Tn. If
S is not the initial state, S is entered when one of the transition fires, thus:
enterS = ((T1 union T2) union ...) union Tn;

7 / 12 Volume X (2011)

Semantic Adaptation using CCSL

If S is the initial state, then there is a slight difference: S is also entered at the start. For this, we
define a clock that ticks only once, on the first tick of chronoTFSM:
Clock initial is chronoTFSM filteredBy 0B1(0); //"filteredBy" applies a binary pattern)

Then all we have to do is add initial to the conditions for entering S:
enterS = (((T1 union T2) union ...) union Tn) union initial;

The events produced as outputs by the state machine are modeled by clocks too. A given output
event E is emitted when one of the transitions that may produce it is fired. Let us call T1, . . . ,Tn

the family of such transitions. Then we can define a clock E as:
E = ((T1 union T2) union ...) union Tn;

Based on those generic constraints, we have created a script that generates automatically the
constraints needed for any instance of a TFSM model. For the TFSM model of the power window
system example described previously, we obtain the following constraints:

Clock chronoTFSM is IdealClk discretizedBy 0.001;
Clock initial is chronoTFSM filteredBy 0B1(0);
// state S [Stop] and incoming transitions
transition1 = (evtUNeutral union evtWEnd) inter (inM delayedFor 1 on chronoTFSM);
transition2 = (evtUUp union evtWEnd) inter (inA delayedFor 1 on chronoTFSM);
enterS = ((transition1 union transition2) union initial);
enterS isSubClockOf chronoTFSM;
inS = sustain enterS upto enterU;
inS isSubClockOf chronoTFSM;
// state M [Up Manu] and incoming transitions
transition4 = (enterU delayedFor 50 on chronoTFSM) inter

(inU delayedFor 1 on chronoTFSM);
enterM = transition4;
enterM isSubClockOf chronoTFSM;
inM = sustain enterM upto enterS;
inM isSubClockOf chronoTFSM;
... // same thing for states U [Up] and A [Up Auto]
// output events
evtWStop = (transition1 union transition2); // ...

Figure 8 shows the simulation of these constraints in TimeSquare with a simulation scenario
specified using the evtUUp, evtUNeutral and evtWEnd clocks. The arrows show the causal
relationships between the ticks leading to state changes for the automaton.

5.2 Describing DE using CCSL

We now describe our methodology for translating a DE model into a set of CCSL constraints.
As for TFSM, we define a chronometric clock chronoDE to measure time. All the other clocks

are subclocks of chronoDE. The main challenge is to schedule the updates of the blocks globally.
Therefore each block B is associated with a clock updateB that ticks at each update of B. As the
updates themselves depend on events sent and received by the blocks, we need to associate a
clock to each pin that ticks each time an event is sent or received. For a pin X , this clock is called
inputX or outputX, depending on the nature of the pin.

DE semantics imply the following constraints on these clocks: (a) the clock of an output pin
must coincide with all the clocks of the connected input pins and (b) the update clock of a block
is the union of all the clocks of its input and output pins.

Again, based on these rules, a script can generate automatically the constraints needed for any
specific DE model. On the power window system example, we obtain the following constraints :

Proc. MPM 2011 8 / 12

ECEASST

Figure 8: Simulation of the TFSM model. Figure 9: Simulation of the DE model.

Clock chronoDE is IdealClk discretizedBy 0.001;
// "Switch" block
updateSwitch = outUUp union outUNeutral;
updateSwitch isSubClockOf chronoDE;
// "Controller" block
updateController = inIUp union (inINeutral union ...;
updateController isSubClockOf chronoDE;
// Relations between blocks
outUUp = inIUp;
outUNeutral = inINeutral;
...

Figure 9 shows traces obtained when an outUUp event is sent by the switch (when it is updated).
It is received by the controller (as an inIUp event), which sends out an outIUp event to the window.

5.3 Semantic Adaptation between DE and TFSM

Once the TFSM and DE models have been generated using the scripts implementing the methodo-
logy, semantic adaptation is very simple to model. The main principle is to focus on the interface
block and to write relations between clocks of the outer and inner models. More specifically:
(a) an equality is written for each pair of related input and output pins of the inner/outer models,
and (b) there must be a relation between the two chronometric clocks chronoTFSM and chronoDE.

// Adaptation of inputs
inIUp = evtUUp;
inINeutral = evtUNeutral;
inIEnd = evtWEnd;
// Adaptation of outputs
evtWUp = outIUp;
evtWStop = outIStop;
// Relation between clocks
chronoDE isPeriodicOn chronoTFSM period 3;

Figure 10 shows the result obtained in TimeSquare for the global heterogeneous model made
from the DE top level model of the system and the TFSM model of the window controller.

9 / 12 Volume X (2011)

Semantic Adaptation using CCSL

Figure 10: Waveforms for the complete power window system example

6 Discussion

The above results show some benefits and drawbacks of our approach. We managed to obtain very
concise CCSL specifications for MoCs, what is very positive compared to the lengthy descriptions
in ModHel’X. However, we consider as a drawback the fact that the CCSL specifications are
model instances instead of independent descriptions of MoCs. To enforce genericity, we had to
write scripts that generate model instances according to rules defining the semantics of the MoC.

Another positive point is that semantic adaptation of control and time is quite easy to define
using CCSL. In addition, we were able to check the consistency of the CCSL specifications of the
whole heterogeneous model of the power window (although interpreting the errors reported by
TimeSquare was difficult). For instance, if the adaptation constraints specify the DE clock to be
of higher frequency than the TFSM clock, the global specification is inconsistent: the delay of
timed transitions in TFSM cannot be mapped on DE time. The solver actually detects a deadlock.
Analysis features are of utmost interest for an approach dedicated to the specification of MoCs
(and of semantic adaptation), which by nature are very difficult to verify and validate.

Regarding the power window case study, we discussed a simplified version of the system to
demonstrate the feasibility of the approach. Therefore, we did not address the DE/SDF semantic
adaptation, even if the SDF MoC could easily be adapted from [MDAS10]. We are currently
working on a complete version of the example including this interesting adaptation.

One limitation of this clock-based approach is that semantic adaptation of data cannot be
addressed in the same way since primitives for manipulating data structure and values do not exist
in CCSL. Therefore, another methodology has to be defined for it. Another issue is the integration
of this approach in ModHel’X. TimeSquare’s solver is a static solver, i.e. the computed solution

Proc. MPM 2011 10 / 12

ECEASST

is a set of clocks with all the ticks for the whole timespan. It is not possible to compute the ticks
at runtime. In consequence, the use of TimeSquare in the execution algorithm of ModHel’X is far
from being straightforward. For the time being we cannot use the existing mechanisms to handle
the adaptation of data together with CCSL specifications for the adaptation of control and time.

In the following section, we compare this paper’s contributions with existing approaches.

7 Related Work

As stated earlier, this paper is inspired by the work by André et al. [MDAS10]. First we have
adapted their approach to the ModHel’X framework. We use CCSL clocks to model the control
points of the execution algorithm of ModHel’X on the different elements of a model (conforming
to the meta-model of ModHel’X). Then we have applied this approach to two MoCs. But our
main contribution is the use of CCSL specifications not only to model MoCs but also to model
the semantic adaptation between two models involving different MoCs. We have shown on an
example that this approach is particularly suitable for describing the semantic adaptation of control
and of time, and that using CCSL specifications is significantly simpler than using an imperative
method. Although not well integrated in ModHel’X yet (as exposed in section 6), this preliminary
work seems promising since it allowed us to detect inconsistencies in the specifications.

To our knowledge, no other approach uses clocks and clock constraints to model semantic
adaptation in the context of model composition. However, the issue of handling different notions
of time and multiple control clocks has been extensively studied, in particular in the domain
of hardware synthesis. Synchronous languages (see [BG92, BCE+03]) like Lustre, Esterel and
Signal use abstract logical time and introduce the notion of multiform time. Other approaches,
like Lucid Synchrone [BCHP08], have explicit support for specifying multi-clock systems.

Regarding model composition itself, ModHel’X can be compared to other approaches such
as Ptolemy II or the MATLAB/Simulink toolchain. Ptolemy II [EJL+03] is one of the first
approaches to model composition. It supports a wide range of MoCs that may be combined
with each other to form heterogeneous models. In ModHel’X, we propose an extension and a
generalization of the solutions introduced by Ptolemy. Adaptation rules at the boundary between
two heterogeneous models is one of our main contributions. In Ptolemy, these rules are hardcoded
in the kernel. The modeler has either to rely on default adaption and design its system accordingly,
or to explicitly add adaptation blocks into the models themselves, what makes models less reusable
and more difficult to understand. In ModHel’X, adaptation is explicit, insulated from the models
and encapsulated into interface blocks. This work on the modeling of semantic adaptation using
CCSL is another step towards an easier way to “glue” together heterogeneous parts of a model.

A power window case study, available on The MathWorks’ website1, illustrates heterogeneous
model composition for Simulink (SDF-like) and Stateflow (TFSM-like). Semantic adaptation
between Simulink and Stateflow is specified explicitly using functions and truth tables. However,
all MoCs cannot be composed like this. For instance, using a Simulink (SDF-like) model into
a SimEvents (DE-like) model requires different adaptation artifacts such as event translation
blocks [CCM06]. Not only are the interactions of SimEvents with Simulink hardcoded: SimEvents
is actually executed on top of Simulink, thus constraining their interactions. The abstract syntax

1 See http://www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html.

11 / 12 Volume X (2011)

http://www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html

Semantic Adaptation using CCSL

and semantics at the core of ModHel’X allow MoCs to be described independently from each
other, and interface blocks allow the description of adaptation patterns for any pair of MoCs.

8 Conclusion

In this paper, we propose to use CCSL, a language for defining clocks and clock constraints, to
specify the semantic adaptation at the border between two heterogeneous models composed in
a hierarchical way. We have adapted an approach proposed in [MDAS10] to our framework for
model composition called ModHel’X. This paper contains two examples of models of compu-
tation described using CCSL and we show how semantic adaptation of control and of time can
be specified between two models using these MoCs. Although preliminary, this work shows
interesting results regarding the conciseness and the readability of the descriptions of both MoCs
and semantic adaptation. Moreover, the TimeSquare solver allowed us to check the consistency of
the semantic adaptation between the two models. This work will be integrated into ModHel’X so
that CCSL-like specifications for the semantic adaptation of control and of time can be used. In
parallel, we are working on a methodology for modeling the semantic adaptation of data.

References
[BCE+03] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, R. de Simone. The

Synchronous Languages 12 Years Later. Proc. of the IEEE 91(1):64–83, 2003.

[BCHP08] D. Biernacki, J.-L. Colaco, G. Hamon, M. Pouzet. Clock-directed Modular Code Gen-
eration of Synchronous Data-flow Languages. In ACM International Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES). 2008.

[BG92] G. Berry, G. Gonthier. The Esterel synchronous programming language: Design, se-
mantics, implementation. Science Of Computer Programming 19(2):87–152, 1992.

[BHJM11] F. Boulanger, C. Hardebolle, C. Jacquet, D. Marcadet. Semantic Adaptation for Mod-
els of Computation. In Proceedings of ACSD 2011. Pp. 153–162. 2011.

[BLL+08] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng. Heterogeneous
Concurrent Modeling and Design in Java (Volume 3: Ptolemy II Domains). Technical
report UCB/EECS-2008-30, University of California, Berkeley, 2008.

[CCM06] C. G. Cassandras, M. I. Clune, P. J. Mosterman. Hybrid System Simulation with
SimEvents. In Proceedings of ADHS. Pp. 267–269. 2006.

[EJL+03] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
Y. Xiong. Taming heterogeneity – The Ptolemy approach. Proc. of the IEEE 91(1):127–
144, 2003.

[HB09] C. Hardebolle, F. Boulanger. Exploring Multi-Paradigm Modeling Techniques. SIMU-
LATION 85:688–708, 2009.

[MDAS10] F. Mallet, J. DeAntoni, C. André, R. de Simone. The clock constraint specification
language for building timed causality models. Innovations in Systems and Software
Engineering 6:99–106, 2010.

Proc. MPM 2011 12 / 12

	Introduction
	ModHel'X, a framework for heterogeneous modeling
	Semantic Adaptation
	The Clock Constraint Specification Language (CCSL)
	Semantic Adaptation using CCSL
	Describing TFSM using CCSL
	Describing DE using CCSL
	Semantic Adaptation between DE and TFSM

	Discussion
	Related Work
	Conclusion

