
Electronic Communications of the EASST
Volume 42 (2011)

Proceedings of the
4th International Workshop on

Multi-Paradigm Modeling
(MPM 2010)

Asserting the Correctness of Translations

Bruno F. Barroca, Vasco M. Amaral

12 pages

Guest Editors: Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Lazlo Lengyel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Asserting the Correctness of Translations

Bruno F. Barroca1, Vasco M. Amaral2

1 Bruno.Barroca@di.fct.unl.pt, http://citi.di.fct.unl.pt/member/member act.php?id=77
2 Vasco.Amaral@di.fct.unl.pt, http://ctp.di.fct.unl.pt/∼va/

Centro de Informática e Tecnologias de Informação (CITI)
Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Portugal

Abstract: While building a new language, we assign its semantics by mapping its
syntax onto a semantic domain. To do so, we can either (i) do it operationally, by
means of small-step morphisms within the same semantic-domain; or (ii) by means
of a translation (syntax-to-syntax transformation), onto a target language that has
already an operational semantics defined. Despite the fact that it is possible to build
the set of syntactic correspondences from a given translation, it is still not clear how
we can assert about the correctness of these syntactic correspondences in w.r.t. both
the source and target language’s underlying semantics.

In this paper, we combine the above described techniques by analyzing the trans-
lation and establishing a semantic relation between the respective operational se-
mantics, in order to assert the correctness of that translation. We demonstrate our
approach with a concrete translation between two languages: State Machines and
Petri Nets; and decide about its correctness by using their respective operational se-
mantics as oracles. Finally, we discuss about the validity of our assertions in w.r.t.
language translations in general.

Keywords: Translations, Model Transformations, Structured Operational Seman-
tics (SOS), Translation Analysis, Translation Symbolic Space, Bissimulation-equivalence

1 Introduction

One of the challenges of multi-paradigm modeling is to be able to accept that we can look
at any existing (or intended) artifact in multiple perspectives simultaneously, in a sound and
coherent fashion — i.e without the existence of logical contradictions between the involved views
over that artifact. These different views can be realized by means of domain specific modeling
languages (DSMLs) [KT08], hence enabling the end-users — the modelers involved in a domain
specific modeling (DSM) activity — a pragmatic and usable way to understand their particular
views. These DSMLs, capture the occurrence of reusable patterns while describing an artifact in
a particular perspective (i.e limited to a given domain), and provide to the end-users a pragmatic
way to apply these reusable patterns in a controlled fashion.

The concern on model comprehension refers to the cognitive capabilities of the end-users
while understanding their own models and dealing with its intrinsic complexity. Hence, the
quality level of a model is specially biased to the computational complexity of the underlying

1 / 12 Volume 42 (2011)

mailto:Bruno.Barroca@di.fct.unl.pt
http://citi.di.fct.unl.pt/member/member_act.php?id=77
mailto:Vasco.Amaral@di.fct.unl.pt
http://ctp.di.fct.unl.pt/~va/

Asserting the Correctness of Translations

analysis algorithms involved in the extraction of a clear rational over the specified models. In
general, depending on the expressiveness of the used language, the size of the model’s analysis
spaces can be unreasonable and reach the limits of undecidability [Plu98].

One solution to solve this complexity management problem while dealing with models is to
provide syntax-to-syntax model transformations (or translations throughout this paper) between
DSMLs. The translations can enable the reuse of the capabilities offered by the different lan-
guages and associated tools, such as efficient analysis algorithms and data structures, simulation
and visualization capabilities, etc.

The translations are also specifications that generically describe how sentences in one lan-
guage are translated to another language. The systematic use of model transformations is in the
heart of model driven development (MDD) approaches, where software development’s complex-
ity is dealt in a systematic way.

DSLTrans [BLA+10] is a syntax-to-syntax model transformation language designed to define
analyzable language translations. Moreover, this language imposes, by construction in its seman-
tics, that all translations are confluent and terminating. These properties are in fact determinant
for the analyzability of the translations due to the finite size of the translation’s analysis/symbolic
space. The analysis of a translation tries to figure-out what are all the possible general relations
between syntactic structures (i.e patterns) expressed in the source language, and its translated
versions expressed on the target language. These structural (rather syntactic) correspondences
between languages can be automatically checked on a given translation by means of a verification
method [LBA10].

However, it is still not clear how we can assert the correctness of the translations’ structural
correspondence set in w.r.t the underlying semantics of both source and target languages — i.e
the translation might be semantically wrong if a model in the source language do not have exactly
the same meaning after being translated to the target language.

In this paper, we discuss how can we assert about the correctness of a translation, by establish-
ing a generic semantic relation between both source and target languages’ semantic definitions.
In Section 2 we present what are the main research trends in this subject. Then, in Section 3, we
give an theoretical overview of the approach while introducing the involved basic concepts. In
Section 4, we demonstrate our approach by means of an experiment that consisted in: (i) build-
ing a translation specification between the State Machine Language and the Petri Net Language;
and (ii) asserting about its correctness w.r.t. their semantics expressed by means of Structured
Operational Semantics (SOS). In Section 5, we discuss the results of the experiment, and we
elaborate on how this approach can be used to assert the correctness about language translations
in general. Finally, in Section 6 we conclude and present future insight on the research on this
subject.

2 Related Work

The quality of model transformations, and in particular the quality of translations is a subject
of great interest. [Kus04] presented some important guidelines and properties that need to be
checked during the validation of some model transformation: syntactic correctness of both in-
put and output models; termination and confluence (unique results and determinism); semantic

Proc. MPM 2010 2 / 12

ECEASST

equivalence or semantics preservation; safety or liveness (to ensure preservation of structural or
security properties).

The proof that a model transformation is valid for any possible model expressed in some
source metamodel is in general not automatic and not even easy to master for a quality engineer.

There are many examples of work on trying to analyse language transformations at the meta
level by reaching proofs from the transformation rules [Con09], [BGL05]. For instance, in [Con09]
an encoding of the lambda-calculus into the pi-calculus (by three simple recursive rules) is pre-
sented, as well as the proof that some semantic properties of the lambda-calculus are preserved
after the encoding into the pi-calculus. Although these languages are relatively small — even
minimalist in our context — the proof that these semantic relations hold between them is still
not easy perform by a quality language engineer.

In order to aid the construction of the proof of semantic preservation along a set of transfor-
mation rules [ALL10] introduced a language to anotate those rules with assertions. The idea
is to then pass these annotations to a reasoning framework that will derive, at the meta level,
conclusions about the overall transformation. The work presented in [ABK07] aims at validating
a model transformation by using the Alloy tool. In this case, Alloy simulates the transforma-
tion by generating a model example of the source language and then analyzing the results of the
transformation.

The authors of [FHLN08] present a constructive fashion to automatically generate a valid
transformation (the authors refers to transformations as ontology alignment) which in princi-
ple would preserve the semantic properties of the input and output models. This generation is
done by using the Similarity Flooding algorithm which is based on a calculation of a distance
measurement between source and target languages.

3 Overview of the approach

In our approach, we use formal models of software languages called linguistic metamodels (or
just metamodels throughout this paper) in order to be able to decide if a given model (or just
sentence throughout this paper) is a syntactically valid expression of a given language. This de-
cision is realized by relating both the terms and their composition on a given sentence, and the
terms and their composition on the metamodel. For instance, if we look at the shapes of these
sentences as being graphs (i.e made out of vertices and edges relating vertices), then we can re-
late the expressed sentences with the metamodel of its language by means of an instance relation
(also referred in the literature as the conformance relation). A sentence being an instance of
a metamodel means that (i) every concept in the sentence is also present in the metamodel of
the language, and (ii) every relation between two concepts in the sentence is also present in
the metamodel of the language relating those concepts. Additional constraints are introduced to
distinguish the types of these relations (e.g containment or association relations), and their car-
dinalities (e.g one to one associations, one to many, etc.). These metamodels could in principle
be used to generate sentences on a given language. However the complete set of sentences that
conforms to a language is typically infinite. Nevertheless, this conformance relation is merely
syntactic, which means that the referred metamodels corresponds to the so called abstract syn-
tax of a language, since they filter the structure and shape of valid expressions of that language

3 / 12 Volume 42 (2011)

Asserting the Correctness of Translations

by only looking to their explicit structure regardless of their implicit value/meaning.
However, this implicit meaning of each and every sentence expressed in a software language

can be made explicit by means of formal mathematical descriptions such as the one proposed by
Plotkin [Plo04]). Plotkin proposed that all the computation steps of a valid computer program
while running in hypothetical computer system can be generically described by means of a fi-
nite set of pre/pos condition rules. These rules form what we call the Structural Operational
Semantics (SOS) of a software language. If we take a program expressed in a given software
language, we can use these SOS rules to collect all of its possible computation steps, and then
build up a graph which we call the program’s transition system. In this graph, each edge is a
transition generated by the conclusion of an application of a SOS rule while symbolically exe-
cuting that program. These edges relates source and target vertices, where each vertex represents
the computation state (i.e values in the hypothetical machine’s memory) before and after that
transition occurred in the symbolic execution. A path in a given transition system, is called a
symbolic execution trace. Note also that with these SOS rules, the implicit meaning of a finite
sentence cannot simply be made explicit because there may be a possible infinite amount of
possible SOS rule applications (i.e its transition system can be infinite).

Despite the fact that the language sentences’ transition systems can be infinite, it is still pos-
sible, for instance, to use their SOS descriptions for checking or proving that two different sen-
tences in a language have the same meaning or value, by establishing an semantic equivalence re-
lation between their transition systems. Examples of these relations are the strong bisimulation-
equivalence, or some other weaker forms such as the simulation equivalence [Par81].

Intuitively, two transition systems are bisimilar-equivalent if all of their possible moves (exe-
cution traces) match each other.

When we perform a translation between a source sentence and a target sentence, the first
thing to consider while asserting correctness of a given translation, is that those sentences may
be expressed in different languages, and that translation preserves its abstraction level. Which
means that the transition systems of every sentence expressed in the source language, and of
its respective translated sentence expressed in the target language, are bisimilar-equivalent. In
other words, to prove that a given translation is correct, we would need to verify this equivalence
between the transition systems of every possible sentence expressed in the source language, and
of their counter-parts in the target language.

Since a language have an infinite amount of possible sentences, this proof would never termi-
nate. Clearly, we have to take a closer look on how the translation is being specified, and extract
from it a finite amount of relevant sentence pairs (from both source and target language) in order
to check the semantic equivalence of their transition systems. These relations are illustrated in
the commutative diagram in the Figure 1. In practice, there may be several ways of transversing
this diagram. However, in our experiment we only show one operational method to transversing
it in a tractable way.

Our hypothesis, is that, if our translation under analysis is expressed in a graph-based model
transformation language, then these relevant sentence pairs can be obtained from the match and
apply patterns (left hand side and right and side graphs respectively) on the rules of the model
transformation itself. Following this line of reason, if we compute all the possible combinations
of rule applications, and multiply by all the possible combinations of composing or merging these
patterns together, then we might get a finite amount of relevant sentence pairs, hence giving the

Proc. MPM 2010 4 / 12

ECEASST

Mmm
translationt - M′mm′

TransitionSystemM

Semmm

? equivalencet- TransitionSystemM′

Semmm′

?

Figure 1: A commutative diagram illustrating the logical principles of the approach. M and M′

are representative sentences from source and target languages of the translation. These repre-
sentative sentences that can be extracted from a translation specification, where mm and mm′

are metamodels identifying each language, Semmm and Semmm′ are each one a set of SOS rules
defined for each language, and TransitionSystemM and TransitionSystemM′ are the resulting
transition system from each sentence M and M′ respectively.

possibility to further check their semantic equivalence. We call these pairs of relevant sentences
as symbolic states of the translation, since they represent intermediate or final relations between
source and target sentences during the translation’s execution.

Depending on the expressiveness of the model transformation language used to express a given
translation, it might be even impossible to prove that the number of the translation’s symbolic
states is finite.

DSLTrans, is a graph-based model transformation language that enables the specification of
translations. These translations are expressed by means of groups of rules organized in a list
of sequential layers — which means that the group of rules in the first layer, is executed before
every other groups. As in a regular graph-based model transformation language, these rules are
formed by a left-hand-side graph (which we call the match model of the transformation rule),
and by a right-hand-side graph (which we call the apply model of the transformation rule). Every
translation expressed in this language is proved by construction to be confluent and terminating.
Moreover, it is also proved that the number of relevant sentence pairs (translation’s symbolic
states) extracted from a DSLTrans’ translation is finite [LBA10]. In our experiment, we will only
assert the correctness of translations expressed in DSLTrans.

4 Case Study: Translating State Machines to Petri Nets

To demonstrate our approach, we present a case study of a translation between two languages:
State Machines and Petri Nets.

We considered a scenario where a language engineer started to develop a domain specific
language by specifying its abstract and concrete syntax, and then assigned its formal semantics
by means of SOS. At some point the language engineer finds some convenience to translate the
State Machine sentences into sentences expressed in the Petri Nets language. In this particular
case, this translation can be very useful since it can enable the reuse of the simulation facilities
given by Petri Nets modeling tools. Once the translation is specified, the final question then is

5 / 12 Volume 42 (2011)

Asserting the Correctness of Translations

how to assert that the specified translation is correct.
One of the translation’s requirements that the language engineer has to prove on its specified

translation, is that all possible valid sentences in the State Machine Language have an equivalent
meaning (in this case computational behaviour) with its translated petri net versions. Thus, we
will use a strong equivalence relation such as bisimilar-equivalence.

4.1 Preparing the Translation

In this experiment, both the State Machine Language and the Petri Nets Language’s abstract
syntax were defined by means of Ecore-based metamodels 1, as shown in Figure 2.

In this experiment, the language engineer defined its translation using the DSLTrans’ trans-
formation tool, which uses EMF-based metamodel specifications in order to load state machine
sentences — i.e conformant with the State Machine Metamodel— and produce petri net sen-
tences — i.e conformant with the Petri Net Metamodel.

(i) (ii)

Figure 2: The State Machine Language Metamodel (i), and the PetriNet Language Meta-
model (ii)

Once the abstract syntax of the language is defined, the language engineer defines its concrete
syntax and its semantics definition. The concrete syntax definition of a language usually extends
the existing abstract syntax with symbols and usable metaphors that enable the domain experts to
quickly understand the sentences in that language. In our examples, for readability, we prefer to
use the concrete syntax versions of both state machines and petri nets sentences. As a reference,
we exemplify how the same sentences look like by using or not its concrete syntax definitions
in Figures 3 and 4, where we show examples of sentences expressed in the State Machines
Language, and the Petri Nets Language respectively.

As mentioned before, the operational semantics of the language can be made explicit by means
of a set of SOS rules. In this experiment, the language engineer defined two small semantics,
one for each language. The operational semantics of the State Machine language is formed
by the following SOS rule defined for an arbitrary State Machine sentence s:

1 http://www.eclipse.org/modeling/emf/?project=emf

Proc. MPM 2010 6 / 12

ECEASST

(Transitions
source−−−→ States) ∧ (Transitions

target−−−→ State′s)

cs(States)
transition−−−−−→ cs(State′s) ∈ T Ss

,

This SOS rule says that if i) we have a Transition defined in a given State Machine sentence s,
which is connected to both a States (by means of a source relation), and to a State′s (by means of
a target relation); and ii) the current state of execution happens to be States (written cs(States)),
then there will exist a transition in the transition system of the sentence s (written T Ss), from
cs(States) to cs(State′s). This transition means that it is possible to move from a current state
of States to State′s given the current state machine sentence s. Moreover we need to build the
first current state (cs(Initials)) by just saying that Initials =⇒ cs(Initials), while imposing that
s needs to have exactly one Initial state.

The transition system of a particular sentence expressed in the State Machine Language is
therefore a set of all the possible transition−−−−−→ relations between current states (denoted as cs(StateS)).
Also note that the transition system of the State Machine Language is finite — intuitively, given
a particular state machine, the value of the current state value will range on all the defined states,
and the number of transition−−−−−→ between the current states will be bounded by the number of transi-
tions defined in that particular state machine.

The semantics of the Petri Net language is defined by the following SOS rule defined for an
arbitrary petri net sentence p:

∀(Transitionp
outArc−−−→ OutArc′) :

(OutArc′p
sourcePlace−−−−−−→ Place′p)∧ (Place′p,T ′) ∈M =⇒ OutArc′p.weight ≤ T ′

m(M = {(Placep,T)}) transition−−−−−→ m({(Placep,T + InArcp.weight−OutArcp.weight)}) ∈ T Sp

,

where InArcp is such that (Transitionp
inArc−−−→ InArcp) ∧ (InArcp

targetPlace−−−−−−→Placep), and OutArcp

is such that (Transitionp
outArc−−−→ OutArcp) ∧ (OutArcp

sourcePlace−−−−−−→ Placep). M is also called the

(i)

{Start}

{Running}

{fire}

{Fault}

{error}

{Stopped}

{end}

{reset}

(ii)

StateMachine

Initial

name=Start

state

State

name=Running

state

State

name=Fault

state

State

name=Stopped

state
Transition

name=fire

transition

Transition

name=error

transition

Transition

name=reset

transition

Transition

name=end

transition

source target sourcetargettarget source source target

Figure 3: The standard visual representation of a state machine using state machine language’s
concrete syntax (i), and its internal hierarchical EMF representation (ii): a model instance of the
petri nets metamodel.

7 / 12 Volume 42 (2011)

Asserting the Correctness of Translations

(i)

Start

fire

1

Running

errorend

Fault

reset

Stopped

1

1 1

1

1

1

1

(ii)

PetriNet

Place

name=Start

place

Place

name=Running

place

Place

name=Fault

place

Place

name=Stopped

place

Transition

name=fire

transition

Transition

name=error

transition

Transition

name=reset

transition

Transition

name=end

transition

Token

token

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlacesourcePlace

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlace sourcePlace

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlace sourcePlace

InArc

weight=1

inArc

OutArc

weight=1

outArc

targetPlacesourcePlace

Figure 4: The standard visual representation of a petri net using the language’s concrete syn-
tax (i), and its internal hierarchical EMF representation (ii): a sentence instance of the petri nets
metamodel. There exists very efficient verification algorithms/techniques developed to determine
invariants of a petri net sentence, such as the overall number of tokens.

marking of the petri net and is initially calculated as M = {(Placep,T) | T = |{(Placep
token−−−→

Tokenp)}|}.
The semantics of a particular Petri Net expression is a set of all the possible transition−−−−−→ relations

between markings. Each marking value (denoted here as M) represents the number of tokens
on each place at some point in the run-time of a particular petri net sentence. Intuitively, there
may be transition systems of Petri Net sentences that may not be finite. In fact, if we consider a
simple petri net sentence with a cycle that produces more tokens than it consumes, the resulting
number of value combinations for its marking would be already infinite.

4.2 The Translation Specification and its Properties

Despite the fact that the two presented languages do share similar concepts, their semantics are
very different in nature, as shown above. However, when the language engineer considers to
specify a translation between them, there is some assumption of semantic compatibility between
them. In other words, the language engineer assumes that there exists a translation where every
state machine, and its translated version in petri nets, have exactly the same behaviour. Therefore
everything meaningful that we can express in the State Machines language should also have the
same meaning in the Petri Nets Language.

In this small experiment, the language engineer produced the translation shown in Figure 5.
The patterns in both match and apply models refer to elements of the State Machine and Petri Net
metamodels, respectively. The language engineer, first wrote the layer Entities which specifies
a direct 1 to 1 mapping between all the concepts of state machines with some significant ones

Proc. MPM 2010 8 / 12

ECEASST

from the petri nets’ language (e.g State : Exp is translated to Place). Then, the language engi-
neer wrote the second layer Associations specifying the translation between all the expressible
(relevant) state machine term compositions with petri net compositions. These compositions
may involve the introduction of new concepts. For instance, to translate the relation named
source between State : Exp and Transition, the language engineer had to introduce the concept
of OutArc.

Figure 5: A DSLTrans’ translation specification between the State Machine Language and the
PetriNet Language.

At first glance, this translation seems to make sense, but it remains an intuition based on the
empirical knowledge of the language engineer. For instance, consider that the translation has
in fact a mistake, where the weight of the produced OutArc in rule source is not 1, but 2. This
specification would in fact produce meaningless petri nets from meaningful state machines. If
we generate a translation’s symbolic state which is a pair (M,M′) of relevant sentences from our
translation, as shown in Figure 6 (i) — the resulting transition systems T SM and T SM′ are not
bisimilar-equivalent — in fact, in this case, T SM′ is empty, since the resulting petri net is dead-
locked. A similar symbolic state resulting from the analysis of the correct translation presented

9 / 12 Volume 42 (2011)

Asserting the Correctness of Translations

in Figure 5, is shown in Figure 6 (ii).

(i)

id1id3

id2

id4

id1

id2

id3 2

id4

2
1

1

cs(id1)id3

cs(id2)

id4

(ii)

id1id3

id2

id4

id1

id2

id3 1

id4

1
1

1

cs(id1)id3

cs(id2)

id4

id3

id4

m({(id1,1),
 (id2,0)})

m({(id1,1),
 (id2,0)})

Figure 6: DSLTrans’ symbolic states (top) annotated with their transition systems (bottom). On
the left (i), a symbolic state of an erroneous translation. On the right (ii), a symbolic state of the
correct one.

Both of the presented symbolic states were a result of an analysis over the presented transla-
tion specifications (both the erroneous and the correct one), where the rule source was combined
with rule target, exploring the different cases where both the source nodes and target nodes of
the transitions are the same or not. In the symbolic state presented in Figure 6 (ii) the bisimilar-
equivalence relation R between both state machine and petri net’s transition systems the can be
expressed as the following:

(cs(id1)),m((id1,1),(id2,0))) ∈ R, and (cs(id2)),m((id2,0),(id2,1))) ∈ R

In fact, if we look into the complete set of symbolic states generated from the translation pre-
sented in Figure 5, and keep only the symbolic states which have valid statemachine sentences
(i.e having only one initial state on their match pattern parts), we can express the same bisimilar-
equivalence relation R in a more comprehensive way:

(cs(State),m({(Trans(State),1)}∪{(Place′,0) | Place′! = Trans(State)})) ∈ R,

where Trans is the translation function given the translation specification under analysis. In other
words, all petri net sentences generated in this particular translation will be bisimilar to their
original state machine counterparts. Also, during symbolic execution, they will have globally
exactly one token, and this token will lie on a place which corresponds exactly to the current
state of the corresponding state machine.

5 Discussion of the Results

In this section, we reason about the applicability of the approach in the engineering of DSMLs
in general.

Proc. MPM 2010 10 / 12

ECEASST

One important limitation while using this approach is that it will only work properly, in the
practice of language engineering, if we are able to check semantic equivalence relations between
the transition systems of each model on each pair provided by the analysis of the given trans-
lation. It is intuitive that, depending on the kind of semantic equivalence that we are trying to
prove, if the source language enables sentences can have infinite sized transition systems, we
can no longer use this method to assert the correctness of that translation — note that in the
experiment presented in the Section 4, the source language of State Machines — as some other
DSMLs — did had a finite transition system. Notice that we do not require that the transition
systems of all sentences in the target language of a translation to be finite — this is due the fact
that our translations are not (by definition) bi-directional, and our assumptions rely only on that.

Besides that, having the fact that DSMLs’ semantics are usually realized by means of code
generators without any use of operational semantics, it is questionable the use of this technique
in practice. However, the intuition is that this technique can be applied if the language engineer
builds up a component model from its generated code — i.e by making the generated code
conformant with a component language, and by using its associated SOS semantics.

6 Conclusions and Future Work

In this paper, we presented a technique that enables the language engineers to assert the correct-
ness of language translations. In particular, we validated a translation between a State Machine
Language and Petri Nets Language. We showed that the resulting relation between their transi-
tion systems is sound w.r.t. the language engineer’s intention while specifying its translation —
i.e every state machine is translated to a particular kind of petri nets that have as an invariant,
the fact that all of its possible markings will have a global size of tokens equal to one. Also,
we discussed about the current limitations of this technique while being applied to assert the
correctness of translations of DSMLs in general.

As future work, we will apply this technique to component models built from code generator
patterns, in order to study what are the main restrictions that have to be applied to the component
language so that the resulting semantic domain of that component language becomes finite, and
therefore analyzable.

Acknowledgements: This work was developed in the context of the following research institu-
tion: CITI fund PEst-OE/EEI/UI0527/2011 Centro de Informática e Tecnologias da Informação
(CITI/FCT/UNL) - 2011-2012

Bibliography

[ABK07] K. Anastasakis, B. Bordbar, J. Küster. Analysis of Model Transformations via Alloy.
In Baudry et al. (eds.), Proceedings of the workshop on Model-Driven Engineer-
ing, Verification and Validation (MoDeVVA 2007), Nashville, TN (USA). Pp. 47–56.
Springer, Berlin/Heidelberg, October 2007.

11 / 12 Volume 42 (2011)

Asserting the Correctness of Translations

[ALL10] M. Asztalos, L. Lengyel, T. Levendovszky. Towards Automated, Formal Verification
of Model Transformations. In ICST 2010: Proceedings of the 3rd International Con-
ference on Software Testing, Verification and Validation. Pp. 15–24. IEEE Computer
Society, 2010.

[BGL05] Formal Verification of Java Code Generation from UML Models. Fujaba Days,
september 2005.

[BLA+10] B. Barroca, L. Lucio, V. Amaral, V. Sousa, R. Felix. DSLTrans: A Turing Incom-
plete Transformation Language. In Proc. 3rd International Conference on Software
Languages Engineering - SLE 2010. Springer-Verlag, 2010.

[Con09] A Logical Interpretation of the Lambda-Calculus into the Pi-Calculus, Preserving
Spine Reduction and Types. In CONCUR 2009 - Concurrency Theory - Lecture
Notes in Computer Science. Volume 5710, pp. 84–98. Springer Berlin / Heidelberg,
2009.

[FHLN08] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut. Metamodel Matching for
Automatic Model Transformation Generation. In Czarnecki et al. (eds.), Model
Driven Engineering Languages and Systems, 11th International Conference, MoD-
ELS 2008, Toulouse, France, September 28 - October 3, 2008. Proceedings. Lecture
Notes in Computer Science 5301, pp. 326–340. Springer, 2008.
doi:http://dx.doi.org/10.1007/978-3-540-87875-924

[KT08] S. Kelly, J.-P. Tolvanen. Domain-Specific Modeling. Wiley-IEEE Computer Society
Press, March 2008.

[Kus04] J. M. Kuster. Systematic Validation of Model Transformations. In Essentials of the
3rd UML Workshop in Software Model Engineering (WiSME2004). 2004.

[LBA10] L. Lucio, B. Barroca, V. Amaral. A Technique for Automatic Validation of
Model Transformations. In ACM/IEEE MoDELS 2010. Springer-Verlag, 10 2010.
URL=http://http://models2010.ifi.uio.no/.

[Par81] D. Park. Concurrency and Automata on Infinite Sequences. In Proceedings of the
5th GI-Conference on Theoretical Computer Science. Pp. 167–183. Springer-Verlag,
London, UK, 1981.
http://dl.acm.org/citation.cfm?id=647210.720030

[Plo04] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Pro-
gram. 60-61:17–139, 2004.

[Plu98] D. Plumpf. Termination of graph rewriting is undecidable. Fundamenta Informaticae
33(2):201–209, 1998.

Proc. MPM 2010 12 / 12

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-87875-9_24
http://dl.acm.org/citation.cfm?id=647210.720030

	Introduction
	Related Work
	Overview of the approach
	Case Study: Translating State Machines to Petri Nets
	Preparing the Translation
	The Translation Specification and its Properties

	Discussion of the Results
	Conclusions and Future Work

