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Introduction – Mechatronics challenges

� Developing Reliable and Robust Embedded Control Software for 
mechatronic applications is too costly and too time consuming.

� Reasons:
� Complexity, Heterogeneity, Lack of Predictability, Late Integration

� Approaches to tackle the problem
� Concurrent Engineering, Model Driven Design, Early Integration
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Mechatronics: Embedded Control Systems

� Essential Properties Embedded Control Software
� Dynamic behavior of the physical system essential for SW
� Real-time constraints with low-latency requirement
� Dependability: Safety, Reliability

� Layered Software structure

� Model-driven Design
� Heterogeneous modeling
� Multiple Models of Computation
� Multiple Modeling formalisms
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ECS Design Methodology

� Aim
� Efficient Concurrent Design
� Fast Integration
� Reliable Result

� Approach:
� Model-Driven Design
� Concurrent Design
� Code Synthesis
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ECS Design Methodology

� Way of Working
� Abstraction

� Hierarchy
� Split into subsystems
� Cope with complexity

� Model-driven design
� Design Space Exploration

� Aspect models
� Make choices
� Limit solution space

� Step-wise refinement
� Add detail
� Lower abstraction

� Implementation
� Realization

� Concurrent design trajectory
� Mechanics, Electronics, SW: Discrete Event, Continuous Time

� Model-level Early Integration where needed
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Design Methodology Discrete Event

� Approach
� Stepwise & local refinement
� Verification by simulation & model checking

� Way of working
� System partitioning into concurrent actors
� C-model : Abstract interactions between concurrent actors
� M-model : Interaction between different MoCs
� R-model : Timing low-level behavior
� Property preserving code synthesis
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Design Methodology Continuous Time

� Approach
� Stepwise & local refinement

� From model towards controller code

� Verification by simulation

� Way of Working

� Model & Understand
Physical system dynamics

� Simplify model, derive the control laws

� Interfaces & target
� Add non-ideal components (AD, DA, PC)

� Dependability: Safety, Reliability, …

� Integrate control laws into ES
� Scaling/conversion factors
� Via local refinement:

� {Software/Processor/Hardware}-In the Loop
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Case study Overview

� Goals
� Apply our methodology

� Real-world setup with industrial complexity
� Concurrent model-driven design
� Trade-off integrated design flow � partial separated design flow

� Integration efficiency analysis
� Comparison with other test cases on the same setup
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Case Study Production cell

Production cell demonstrator
� Based on:

Stork Plastics Molding machine

� Architecture
� CPU (ECS) + FPGA (digital I/O)
� Distributed Control possible

� 6 Production Cell units
� Action in the production process

� Molding, Extraction,
Transportation, Storage

� Synchronize with neighbors
� Deadlock possible on > 7 blocks
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Case Study Production cell

� Embedded Control System Software Design
� Jointly

� Specs, partitioning, interfaces

� Concurrently
� SW partitions

� Jointly
� SW integration & testing
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Case Study Partitioning & Hierarchy

� Embedded Software
� Discrete Event partition
� Continuous/Discrete Time partition

� Based on
� Top level system model
� Production Cell Units (PCUs)

� Layered Software structure

� Interface
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Discrete Event Software Design

� Modeling tools : SHESim/Rotalumis
� POOSL: Parallel Object-Oriented Specification Language
� SHESim: Graphical tool for model construction and simulation
� Rotalumis: Fast execution engine built in C++

� C-model : handshake diagram formalized in POOSL model
� Partitions design into a set of concurrent actors
� Actors synchronize action by a handshake sequence
� Models untimed abstract interactions between actors
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Discrete Event Software Design

� M-model:
� Refinement of C-model
� Adds interfaces to low-level behavior
� Focuses on interactions between high-level DE-control and 

DT/CT loop control (MoC interaction)
� Externally observable behavior is kept the same
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Discrete Event Software Design

� R-model:  
� Refinement of M-model
� Adds low-level behavior 
� Both DT and DE behavior 
� Adds timing
� Again, externally observable 

functional behavior is kept the same

� Automatic code synthesis:
� Automatic mapping to target platform
� Property-preserving code generation
� Building blocks with common interface 
� Mathematically proven timing relation 

between model and implementation

Continuous()()

[ curstate = prestate ] 

curstate := sensor Read;

delay 0.01;

Continuous()().

Discrete()()

sel

[ (curstate) & (prestate=false) ] 

sensor ! on { prestate := curstate }

or

[ (prestate) & (curstate=false) ] 

sensor ! off  { prestate := curstate }

les;

Discrete()().
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Continuous Time Software Design

� Goal
� Loop Controller Algorithm in C++ POOSL dataclass
� Low Level Safety & Sanity Check
� Event Interface (start/stop/error …)

� Modeling Tools & Languages: 20-sim
� Physical System Model: ODE, bond graphs, data flow
� Code Synthesis: template based C/C++
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Continuous Time Software Design
Controlled Motion Rotation Robot
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class Controller_Rotation: public PooslDataClass
{ /* the model functions */

void Initialize (double *u, double *y, double time);
void Read (double *u, double *y);
void Calculate (double *u, double *y, double time );
void Write (double *u, double *y);
void Terminate (double *u, double *y);

};
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Integration

� Discrete Event
� Last iteration:

� Timing

� Continuous Time / Discrete Time
� Last iteration:

� Event interface
� Target unit test

� Code synthesis
� Stepwise
� Partial code generation
� Template based
� Simulation feedback

� Target tests
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POOSL template
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I/O drivers
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implementation
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Results & Discussion

� Short integration & testing phase
� < 2 days, previous case: > week

� Almost running first time right
� Minor timing issue with magnet on/off traction 

delay
� Concurrent, but separated design
� Minimal information exchange

� Refinements on interfaces, data types, timing

� Required
� Good partitioning
� Building blocks approach

� Working setup
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Results Movie
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Results & Discussion

� Trade-off Concurrent Design � Integration
� Minimal design interaction
� Minimal information exchange

� Refinements on interfaces, data types, timing
� Designers attitude

� Focus on own partition, but think across discipline boundaries

� Possible Improvements
� Model-based integration tests

� Physical system model could be used to test the final software �
Virtual Prototyping

� Tool support:
� Automated consistency checks
� Tool � Tool integration
� Model � Model interaction
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Conclusions

� Mechatronics / Cyber Physical Systems
� Synergistic design approach
� Close cooperation between disciplines � integrated design

� Integrated design � concurrent design efficiency
� Trade-off between early integration and late integration time
� Choice is project specific

� Good partitioning of the mechatronic system
� Allows concurrent, but partly separated design

� Case: fully integrated design is not always needed
� More efficient work flow with still predictable integration

� Methodology not limited to SW implementation ECS
� ECS in FPGA realization available
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Ongoing work

� Embedded Control System software for our Humanoid 
Soccer Robot
� Vision processing
� Supervisory control
� Sequence control
� Path planning
� Soccer strategy
� Low level loop control

� 24 degrees of freedom


