
07/10/2009 Concurrent Design of Embedded
Control Software

1

Concurrent Design of
Embedded Control Software
Third International Workshop on Multi-Paradigm Modeling
MPM`09, 06-10-2009

Marcel Groothuis, Jan Broenink
University of Twente, The Netherlands

Raymond Frijns, Jeroen Voeten
Eindhoven University of Technology, The Netherlands

Concurrent Design of Embedded Control Software 2

Contents

� Introduction
� Mechatronic systems design challenges
� Embedded Control Systems software

� Model-driven Design Methodology

� Case study

� Results & Conclusions

Concurrent Design of Embedded Control Software 3

Introduction – Mechatronics challenges

� Developing Reliable and Robust Embedded Control Software for
mechatronic applications is too costly and too time consuming.

� Reasons:
� Complexity, Heterogeneity, Lack of Predictability, Late Integration

� Approaches to tackle the problem
� Concurrent Engineering, Model Driven Design, Early Integration

Continuous
Time

Control

Discrete
Event

Control

Integration

Continuous
Time

Control

Integration

Continuous
Time

Control

Discrete
Event

Control

Integration

Sequential
design process (a)

Concurrent
design process (b)

Trade-off between concurrency
efficiency and integration efficiency (d)

D
es

i g
n

T
i m

e

Continuous
Time

Control

Discrete
Event

Control

Integration

Model-driven concurrent
design process(c)

1

3

2

Specs Specs Specs Specs

Discrete
Event

Control

Trade-off concurrent design flow � integration efficiency

Concurrent Design of Embedded Control Software 4

Mechatronics: Embedded Control Systems

� Essential Properties Embedded Control Software
� Dynamic behavior of the physical system essential for SW
� Real-time constraints with low-latency requirement
� Dependability: Safety, Reliability

� Layered Software structure

� Model-driven Design
� Heterogeneous modeling
� Multiple Models of Computation
� Multiple Modeling formalisms

Embedded software

Actuators

Sensors

Physical process

I/O hardware

Power

amplifier
D/A

A/D
Filtering/

Scaling

Physical systemSoft
real-time

Hard
real-time

Non
real-time

Concurrent Design of Embedded Control Software 5

ECS Design Methodology

� Aim
� Efficient Concurrent Design
� Fast Integration
� Reliable Result

� Approach:
� Model-Driven Design
� Concurrent Design
� Code Synthesis

Concurrent Design of Embedded Control Software 6

ECS Design Methodology

� Way of Working
� Abstraction

� Hierarchy
� Split into subsystems
� Cope with complexity

� Model-driven design
� Design Space Exploration

� Aspect models
� Make choices
� Limit solution space

� Step-wise refinement
� Add detail
� Lower abstraction

� Implementation
� Realization

� Concurrent design trajectory
� Mechanics, Electronics, SW: Discrete Event, Continuous Time

� Model-level Early Integration where needed

Concurrent Design of Embedded Control Software 7

Design Methodology Discrete Event

� Approach
� Stepwise & local refinement
� Verification by simulation & model checking

� Way of working
� System partitioning into concurrent actors
� C-model : Abstract interactions between concurrent actors
� M-model : Interaction between different MoCs
� R-model : Timing low-level behavior
� Property preserving code synthesis

R-modelReal-time

M-modelMulti MoC

High

Low

C-modelConcurrency

Abstraction levelModelsCharacteristics

Concurrent Design of Embedded Control Software 8

Design Methodology Continuous Time

� Approach
� Stepwise & local refinement

� From model towards controller code

� Verification by simulation

� Way of Working

� Model & Understand
Physical system dynamics

� Simplify model, derive the control laws

� Interfaces & target
� Add non-ideal components (AD, DA, PC)

� Dependability: Safety, Reliability, …

� Integrate control laws into ES
� Scaling/conversion factors
� Via local refinement:

� {Software/Processor/Hardware}-In the Loop

Physical
System

Modeling

Control
Law

Design

Embedded
Control System
Implementation

Verification
by

Simulation /
Model Check

Realization

Validation
and

Testing

Verification
by

Simulation

Verification
by

Simulation

Physical
System

Modeling

Control
Law

Design

Embedded
Control System
Implementation

Verification
by

Simulation /
Model Check

Realization

Validation
and

Testing

Verification
by

Simulation

Verification
by

Simulation

Concurrent Design of Embedded Control Software 9

Case study Overview

� Goals
� Apply our methodology

� Real-world setup with industrial complexity
� Concurrent model-driven design
� Trade-off integrated design flow � partial separated design flow

� Integration efficiency analysis
� Comparison with other test cases on the same setup

Concurrent Design of Embedded Control Software 10

Case Study Production cell

Production cell demonstrator
� Based on:

Stork Plastics Molding machine

� Architecture
� CPU (ECS) + FPGA (digital I/O)
� Distributed Control possible

� 6 Production Cell units
� Action in the production process

� Molding, Extraction,
Transportation, Storage

� Synchronize with neighbors
� Deadlock possible on > 7 blocks

CPU +

FPGA

Motor 150W

Gearhead 43:1

Encoder

Motor 150W

Gearhead 43:1

Encoder

Al

Extraction unit

Molder
door

Feeder
unit

Feeder belt

Extraction belt

Rotation

unit

Motor 70W

Gearhead 18:1

Encoder

Magnet

Sensor

Extraction
buffer

Molder
unit

Block movement direction

Embedded
PC

Concurrent Design of Embedded Control Software 11

Case Study Production cell

� Embedded Control System Software Design
� Jointly

� Specs, partitioning, interfaces

� Concurrently
� SW partitions

� Jointly
� SW integration & testing

Continuous
Time

Control

Discrete
Event

Control

IntegrationD
es

ig
n

T
im

e

Model-driven concurrent
design process

1

3

2

Specs

U
s
e
r

in
te
rf
a
c
e

S
u
p
e
rv
is
o
ry

c
o
n
tr
o
l
&

In
te
ra
c
ti
o
n

S
e
q
u
e
n
c
e

c
o
n
tr
o
l

L
o
o
p
 c
o
n
tr
o
l

S
a
fe
ty
 l
a
y
e
r

Concurrent Design of Embedded Control Software 12

Case Study Partitioning & Hierarchy

� Embedded Software
� Discrete Event partition
� Continuous/Discrete Time partition

� Based on
� Top level system model
� Production Cell Units (PCUs)

� Layered Software structure

� Interface

U
s
e
r

in
te
rf
a
c
e

S
u
p
e
rv
is
o
ry

c
o
n
tr
o
l
&

In
te
ra
c
ti
o
n

S
e
q
u
e
n
c
e

c
o
n
tr
o
l

L
o
o
p
 c
o
n
tr
o
l

S
a
fe
ty
 l
a
y
e
r

CTCT/DTDE

CPU +

FPGA

Motor 150W

Gearhead 43:1

Encoder

Motor 150W

Gearhead 43:1

Encoder

Al

Extraction unit

Molder
door

Feeder
unit

Feeder belt

Extraction belt

Rotation

unit

Motor 70W

Gearhead 18:1

Encoder

M
o
to
r 1
5
0
W

G
e
a
rh
e
a
d
 1
5
:1

E
n
c
o
d
e
r

Magnet

M
o
to
r 1
5
0
W

G
e
a
rh
e
a
d
 1
5
:1

E
n
c
o
d
e
r

Sensor

Extraction
buffer

Molder
unit

Block movement direction

Embedded
PC

Interface definitions

Concurrent Design of Embedded Control Software 13

Discrete Event Software Design

� Modeling tools : SHESim/Rotalumis
� POOSL: Parallel Object-Oriented Specification Language
� SHESim: Graphical tool for model construction and simulation
� Rotalumis: Fast execution engine built in C++

� C-model : handshake diagram formalized in POOSL model
� Partitions design into a set of concurrent actors
� Actors synchronize action by a handshake sequence
� Models untimed abstract interactions between actors

Concurrent Design of Embedded Control Software 14

Discrete Event Software Design

� M-model:
� Refinement of C-model
� Adds interfaces to low-level behavior
� Focuses on interactions between high-level DE-control and

DT/CT loop control (MoC interaction)
� Externally observable behavior is kept the same

Concurrent Design of Embedded Control Software 15

Discrete Event Software Design

� R-model:
� Refinement of M-model
� Adds low-level behavior
� Both DT and DE behavior
� Adds timing
� Again, externally observable

functional behavior is kept the same

� Automatic code synthesis:
� Automatic mapping to target platform
� Property-preserving code generation
� Building blocks with common interface
� Mathematically proven timing relation

between model and implementation

Continuous()()

[curstate = prestate]

curstate := sensor Read;

delay 0.01;

Continuous()().

Discrete()()

sel

[(curstate) & (prestate=false)]

sensor ! on { prestate := curstate }

or

[(prestate) & (curstate=false)]

sensor ! off { prestate := curstate }

les;

Discrete()().

Concurrent Design of Embedded Control Software 16

Continuous Time Software Design

� Goal
� Loop Controller Algorithm in C++ POOSL dataclass
� Low Level Safety & Sanity Check
� Event Interface (start/stop/error …)

� Modeling Tools & Languages: 20-sim
� Physical System Model: ODE, bond graphs, data flow
� Code Synthesis: template based C/C++

Sample1 Encoder

Z
-1

Delay1

PlantController

A
D

PWM

Physical
System

Modeling

Control
Law

Design

Embedded
Control System
Implementation

Verification
by

Simulation /
Model Check

Realization

Validation
and

Testing

Verification
by

Simulation

Verification
by

Simulation

Physical
System

Modeling

Control
Law

Design

Embedded
Control System
Implementation

Verification
by

Simulation /
Model Check

Realization

Validation
and

Testing

Verification
by

Simulation

Verification
by

Simulation

Physical
System

Modeling

Control
Law

Design

Embedded
Control System
Implementation

Verification
by

Simulation /
Model Check

Realization

Validation
and

Testing

Verification
by

Simulation

Verification
by

Simulation

Physical
System

Modeling

Control
Law

Design

Embedded
Control System
Implementation

Verification
by

Simulation /
Model Check

Realization

Validation
and

Testing

Verification
by

Simulation

Verification
by

Simulation

pos_in
finished

motor_out

MotionprofileFWBW

K
1

Attenuate1

K

Gain_FF_velocity

K

Gain_FF_acceleration

PID
PID2 DutyCyleLimiter

H-bridge model

PWM (1.0=100%)

Encoder pulses (2000/motor rev) Arm with magnet + block

Plant model rotation robot

Motor and transmission

Position

PWM K
HBridgeVoltage

K

K_Motor

1
8.233e-005s +0.3172

LinearSystem1 SignalLimiter1

K

ToEncoderPulses IArmWithMagnet

I
Roller

RRollerBearing

TF
TF

TF
BeltPulley

C Cbelt

0

GY
Motor

CC1

IMotorCoil

R
Rbreak

1

MSe
MSe 1

R MotorResistance

1

IHangingBlock MTF
MTF

p

MagnetPower SeGravity

f

Concurrent Design of Embedded Control Software 17

Continuous Time Software Design
Controlled Motion Rotation Robot

0

0.1

0.2

0.3

0.4

Ref Position {m}

-5

0

5 Motor current {A}

-500

0

500 Rotation velocity {rad/s}

-0.5

0

0.5 PWM Output {x100%)

0

1

2

3 Real Pos {rad}

-0.0005

0

0.0005 Error {m}

0

0.5

1

1.5
Forward Finished

0 0.5 1 1.5 2
time {s}

0

0.5

1

1.5
Backward Finished

class Controller_Rotation: public PooslDataClass
{ /* the model functions */

void Initialize (double *u, double *y, double time);
void Read (double *u, double *y);
void Calculate (double *u, double *y, double time);
void Write (double *u, double *y);
void Terminate (double *u, double *y);

};

FPGA
HW

DE
software

Loop +
Safety

CPU +

FPGA

Motor 150W

Gearhead 43:1

Encoder

Motor 150W

Gearhead 43:1

Encoder

F

E

Extraction
buffer

Embedded
PC

Concurrent Design of Embedded Control Software 18

Integration

� Discrete Event
� Last iteration:

� Timing

� Continuous Time / Discrete Time
� Last iteration:

� Event interface
� Target unit test

� Code synthesis
� Stepwise
� Partial code generation
� Template based
� Simulation feedback

� Target tests

Shesim 20-sim

C++ class

POOSL template

RTAI Linux
Target template

Motion profiles (12x)
Controllers (6x)

I/O drivers
template

POOSL
implementation

Rotalumis
implementation

Target PC Setup

Concurrent Design of Embedded Control Software 19

Results & Discussion

� Short integration & testing phase
� < 2 days, previous case: > week

� Almost running first time right
� Minor timing issue with magnet on/off traction

delay
� Concurrent, but separated design
� Minimal information exchange

� Refinements on interfaces, data types, timing

� Required
� Good partitioning
� Building blocks approach

� Working setup

Concurrent Design of Embedded Control Software 20

Results Movie

Concurrent Design of Embedded Control Software 21

Results & Discussion

� Trade-off Concurrent Design � Integration
� Minimal design interaction
� Minimal information exchange

� Refinements on interfaces, data types, timing
� Designers attitude

� Focus on own partition, but think across discipline boundaries

� Possible Improvements
� Model-based integration tests

� Physical system model could be used to test the final software �
Virtual Prototyping

� Tool support:
� Automated consistency checks
� Tool � Tool integration
� Model � Model interaction

Continuous
Time

Control

Discrete
Event

Control

IntegrationD
es

ig
n

T
i m

e

Model-driven concurrent
design process

1

3

2

Specs

Continuous
Time

Control

Discrete
Event

Control

IntegrationD
es

ig
n

T
i m

e

Model-driven concurrent
design process

1

3

2

Specs

Concurrent Design of Embedded Control Software 22

Conclusions

� Mechatronics / Cyber Physical Systems
� Synergistic design approach
� Close cooperation between disciplines � integrated design

� Integrated design � concurrent design efficiency
� Trade-off between early integration and late integration time
� Choice is project specific

� Good partitioning of the mechatronic system
� Allows concurrent, but partly separated design

� Case: fully integrated design is not always needed
� More efficient work flow with still predictable integration

� Methodology not limited to SW implementation ECS
� ECS in FPGA realization available

Concurrent Design of Embedded Control Software 23

Ongoing work

� Embedded Control System software for our Humanoid
Soccer Robot
� Vision processing
� Supervisory control
� Sequence control
� Path planning
� Soccer strategy
� Low level loop control

� 24 degrees of freedom

