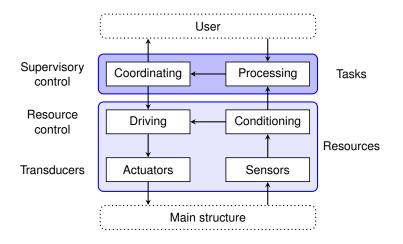
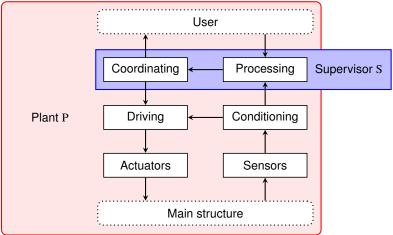
Model-Based Engineering of Supervisory Controllers using the CIF

Ramon Schiffelers

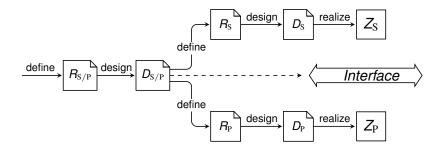

joint work with

Rolf Theunissen, Bert van Beek, and Koos Rooda Systems Engineering Group Dept. of Mechanical Engineering Eindhoven, University of Technology

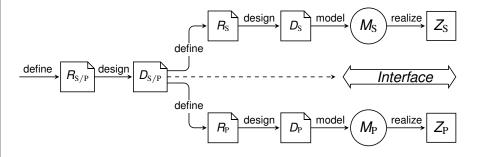
October 6, 2009


- Supervisory control
- Supervisory control design
 - conventional
 - using MBE
 - using MBE and SCS
- Small example of MBE+SCS
- Languages + Translations
- Industrial case study: Patient support system of a MRI scanner
- Concluding remarks

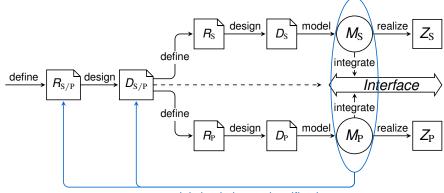
Supervisory control in high-tech systems


Systems view

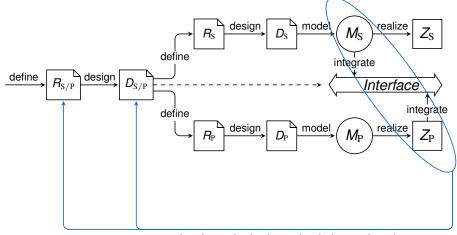
- A system can be divided in
 - (uncontrolled) Plant P
 - Supervisor (controller) S



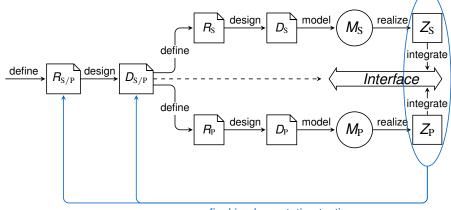
Supervisor S ensures that plant P satisfies control requirements $R_{\rm S}$.


Conventional design

Model-based Engineering



Model-based Engineering

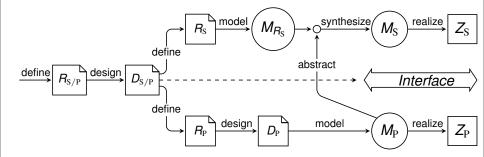

model simulation and verification

Model-based Engineering

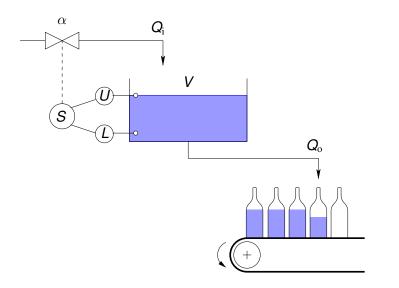
hardware-in-the-loop simulation and testing

Model-based Engineering

final implementation testing

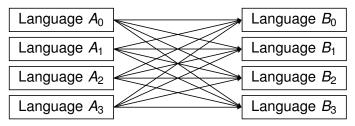

Approach:

- Model (uncontrolled) plant \implies $M_{\rm P}$ (hybrid model)
- Abstract from $M_{\rm P}$ (hybrid model) $\implies M_{\rm P}$ (discrete-event model)
- Model control requirements $R_{\rm S}$ that determine when events may happen $\implies M_{R_{\rm S}}$ (formal requirements)
- Synthesize the supervisor \implies *M*_S (discrete-event model)

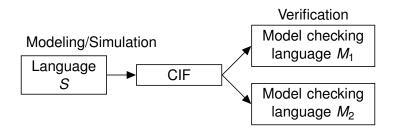

The resulting supervisor is

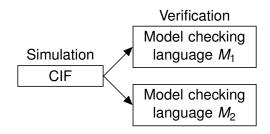
- ▶ by construction mathematically correct w.r.t. M_{Rs}
- non-blocking (deadlock and livelock free)
- maximally permissive allowing selection of 'optimal' sequence of events

Model-based Engineering and Supervisory Control Synthesis

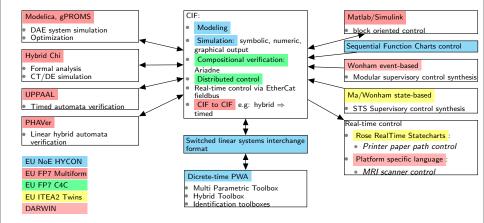

Example: tank controller


- Input languages for supervisor synthesis:
 - in the paper: ADS containing plants + requirements modeled by automata)
 - in this presentation SCIM containing plants + requirements modeled by automata + flow chart specifying the synthesis calculation.
- Interchange language: CIF.

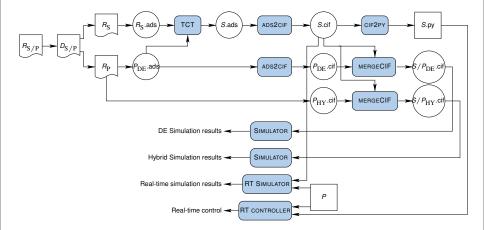

- Establish inter-operability of a wide range of tools by means of model transformations to and from the CIF.
 Avoid the implementation of many bi-lateral translators between specific formalisms.
- Provide a generic modeling formalism and tools (such as a simulator) for a wide range of hybrid systems.


Without the CIF:

With the CIF:

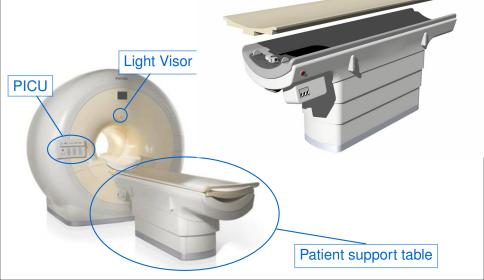

Language

- Domain model specified using *Ecore* class diagrams
- Concrete syntax:
 - Mathematical notation that facilitates the definition of the semantics
 - ASCII notation for modeling
 - Graphical notation for modeling
- Formal (behavioral) semantics specified using Structural Operational Semantics (SOS) [Plotkin]

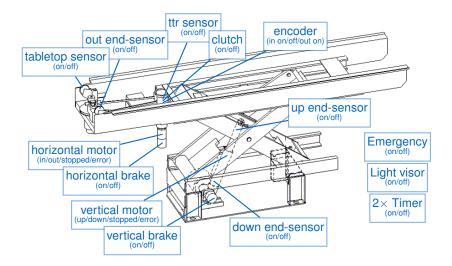

Tools

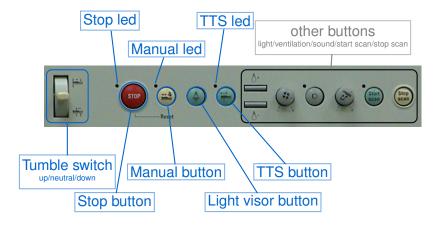
- Graphical Editor (based on GMF)
- (Hybrid) Simulator
- · Real-Time simulator in order to control hardware via EtherCAT
- Translators
 - ADS2CIF
 - SCIM2CIF
 - CIF2PY (subset!)
- Applications
 - Small examples
 - Industrial case study

Overview of projects on CIF


Tool framework based on CIF

- ADS2CIF, model2model transformation implemented using a GPL (Python)
- CIF2PY: codegeneration, implemented using a GPL (Python)
- SCIM2CIF: model2model transformation
 - implemented using GPL (Python)
 - modeled using ATL


Industrial case study



Patient support system

Table

PICU (user interface)

Uncontrolled plant M_P

Uncontrolled plant M_P consists of 17 small automata describing:

- Horizontal axis
- Vertical axis
- User interface buttons

In total 1296 states and 27360 transitions for the uncontrolled plant.

Control requirements M_{Rs}

- The model of the control requirements M_{Rs} consists of 16 small automata
- Examples of requirements:
 - Do not move beyond end sensors
 - Only motorized movement if clutch is active
 - No motorized movement if Table-Top-Release active
 - Only move vertically if horizontally in maximal out position
 - Tumble switch moves table up and down, or in and out

• . . .

Supervisor synthesis

- ► The model of the supervisor *M*_S consists of 2816 states and 21672 transitions
- Supervisor synthesis takes a minute on a desktop pc

- The synthesized supervisor has been simulated in parallel with the (hybrid) model of the plant
- The synthesized supervisor has been simulated in real-time with the actual patient support system (hardware-in-the-loop simulation)

- Developed a (tool) framework, based on MBE and SCS to develop supervisory controllers
- Applied the framework on an industrial case study
- Prototype SCIDE (Integrated Development Environment for Supervisory control synthesis)

Future work:

- Lots of theory available for supervisory control synthesis
 - monolitic / modular / decentralized / hierarchical / interface-based supervisors
 - event-based / state-based supervision
 - different formalisms for plant modeling and requirement specifications
- Translations
 - Which transformation language(s) (or GPL)?
 - Semantics / property preservation?
- How to deal/manage many translations?

Model-Based Engineering of Supervisory Controllers using the CIF

Ramon Schiffelers

joint work with

Rolf Theunissen, Bert van Beek, and Koos Rooda Systems Engineering Group Dept. of Mechanical Engineering Eindhoven, University of Technology

October 6, 2009