
Introduction Approach Analysis/Discussion Future and Ongoing Work

Synthesizing Executable Simulations from
Structural Models of Component-Based Systems

Andreas Schuster and Jonathan Sprinkle

October 6, 2009

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 1

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline I

1 Introduction
The Domain
Autonomous Ground Vehicles
Difficulties in Autonomous Vehicle Software

2 Approach
Language Design
Experiment Example
Experiment Synthesis

3 Analysis/Discussion
startsim.sh
car.cfg
laser2d.cfg
imu.cfg
dgclocalnav.cfg

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 2

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline II

Runtime Types

4 Future and Ongoing Work
UA Autonomous Ground Vehicles

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 3

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 4

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 5

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 6

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 7

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 8

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 9

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 10

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 11

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 12

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 13

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 14

Introduction Approach Analysis/Discussion Future and Ongoing Work

The Domain

What domain is this anyway?

Autonomous Ground Vehicles

Complex, cyber-physical systems
Robotics, control, software, and information experts required

Component-based middleware

Networked, real-time and soft real-time components
High bandwidth and low bandwidth components
Simple, component model
Large parameter space for various scenarios, experiments

Effort

Many domain experts, few programming experts
Individually proven, but not system tested, software
Body of regression tests necessary for evolutionary approach

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 15

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Sydney-Berkeley Driving Team

Link to online movie.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 16

http://www.ece.arizona.edu/~sprinkjm/research/mehs/index.php/Main/Movies

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 17

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 18

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 19

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 20

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 21

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 22

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 23

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Domain Difficulties

Robotics software in general

Individual task complexity and dynamic real-time nature [1]
Generalization of algorithms nontrivial
Large number of software contributors
Distributed, cross-platform computing environments are
non-intuitive for domain experts

Individual projects

Necessity of regression tests [2]
Simulation complexity increases dramatically when realistic
simulations used

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 24

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Middleware Solutions

Middleware and component-based technologies facilitate the
abstraction of communication, and location of computation.

CORBA

ICE

Distributed Real-Time Embedded Systems

Composition of such systems a subject of significant effort by
Schmidt et al.

The CoSMIC Toolsuite [3] can
1 model and analyze DRE application functionality and QoS

requirements
2 synthesize CCM-specific deployment metadata for end-to-end

QoS (static and dynamic)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 25

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Why not just CoSMIC?

In our domain, we focus on experiment synthesis, and must
incorporate other robotics middleware solutions.

In our domain, we consider that (probably) the code is already
written, and in fact the middleware experts already have the ability
to produce experiments. What is missing?

Novice users, experts in their domain, have no idea how to
run the system

Integration strategies are often ad hoc

Changes to component integration nontrivial, and parameter
values used difficult to recall from previous experiments.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 26

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Why not just CoSMIC?

In our domain, we focus on experiment synthesis, and must
incorporate other robotics middleware solutions.

In our domain, we consider that (probably) the code is already
written, and in fact the middleware experts already have the ability
to produce experiments. What is missing?

Novice users, experts in their domain, have no idea how to
run the system

Integration strategies are often ad hoc

Changes to component integration nontrivial, and parameter
values used difficult to recall from previous experiments.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 27

Introduction Approach Analysis/Discussion Future and Ongoing Work

Autonomous Ground Vehicles

Why not just CoSMIC?

In our domain, we focus on experiment synthesis, and must
incorporate other robotics middleware solutions.

In our domain, we consider that (probably) the code is already
written, and in fact the middleware experts already have the ability
to produce experiments. What is missing?

Novice users, experts in their domain, have no idea how to
run the system

Integration strategies are often ad hoc

Changes to component integration nontrivial, and parameter
values used difficult to recall from previous experiments.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 28

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

Robotics Middleware Solutions

Various robotics-specific middleware already attempt to aid
robotics researchers in writing domain-independent, application
independent software.

Gearbox [1]

Player/Stage [4]

Orocos [5]

Microsoft Robotics Studio [6]

In order to use software in more than one domain, it must be
configurable, and parameterizable. This has the tradeoff that it
becomes much more difficult to understand for new members of a
team. Regrettably, none of these tools provide seamless integration
at the model level, though many support code-level integration and
application-specific parametrization of various software
components.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 29

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

Robotics Middleware Solutions

Various robotics-specific middleware already attempt to aid
robotics researchers in writing domain-independent, application
independent software.

Gearbox [1]

Player/Stage [4]

Orocos [5]

Microsoft Robotics Studio [6]

In order to use software in more than one domain, it must be
configurable, and parameterizable. This has the tradeoff that it
becomes much more difficult to understand for new members of a
team. Regrettably, none of these tools provide seamless integration
at the model level, though many support code-level integration and
application-specific parametrization of various software
components.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 30

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

Robotics Middleware Solutions

Various robotics-specific middleware already attempt to aid
robotics researchers in writing domain-independent, application
independent software.

Gearbox [1]

Player/Stage [4]

Orocos [5]

Microsoft Robotics Studio [6]

In order to use software in more than one domain, it must be
configurable, and parameterizable. This has the tradeoff that it
becomes much more difficult to understand for new members of a
team. Regrettably, none of these tools provide seamless integration
at the model level, though many support code-level integration and
application-specific parametrization of various software
components.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 31

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

Robotics Middleware Solutions

Various robotics-specific middleware already attempt to aid
robotics researchers in writing domain-independent, application
independent software.

Gearbox [1]

Player/Stage [4]

Orocos [5]

Microsoft Robotics Studio [6]

In order to use software in more than one domain, it must be
configurable, and parameterizable. This has the tradeoff that it
becomes much more difficult to understand for new members of a
team. Regrettably, none of these tools provide seamless integration
at the model level, though many support code-level integration and
application-specific parametrization of various software
components.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 32

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

Robotics Middleware Solutions

Various robotics-specific middleware already attempt to aid
robotics researchers in writing domain-independent, application
independent software.

Gearbox [1]

Player/Stage [4]

Orocos [5]

Microsoft Robotics Studio [6]

In order to use software in more than one domain, it must be
configurable, and parameterizable. This has the tradeoff that it
becomes much more difficult to understand for new members of a
team. Regrettably, none of these tools provide seamless integration
at the model level, though many support code-level integration and
application-specific parametrization of various software
components.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 33

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

Robotics Middleware Solutions

Various robotics-specific middleware already attempt to aid
robotics researchers in writing domain-independent, application
independent software.

Gearbox [1]

Player/Stage [4]

Orocos [5]

Microsoft Robotics Studio [6]

In order to use software in more than one domain, it must be
configurable, and parameterizable. This has the tradeoff that it
becomes much more difficult to understand for new members of a
team. Regrettably, none of these tools provide seamless integration
at the model level, though many support code-level integration and
application-specific parametrization of various software
components.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 34

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

Robotics Middleware Solutions

Various robotics-specific middleware already attempt to aid
robotics researchers in writing domain-independent, application
independent software.

Gearbox [1]

Player/Stage [4]

Orocos [5]

Microsoft Robotics Studio [6]

In order to use software in more than one domain, it must be
configurable, and parameterizable. This has the tradeoff that it
becomes much more difficult to understand for new members of a
team. Regrettably, none of these tools provide seamless integration
at the model level, though many support code-level integration and
application-specific parametrization of various software
components.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 35

Introduction Approach Analysis/Discussion Future and Ongoing Work

Difficulties in Autonomous Vehicle Software

The Orca Robotics Project

Orca is an open-source software framework for developing robotic
systems [7].

An implementation framework, not an architecture

Developers can run their code on any system/network, as long
as the interfaces are connected

Known OS support includes

Linux
QNX Neutrino
Windows XP1

Uses ICE middleware, all interfaces, etc., specified using
proprietary IDLs

1Not all components are supported on all operating systems, but some
components are supported on each.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 36

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline I

1 Introduction
The Domain
Autonomous Ground Vehicles
Difficulties in Autonomous Vehicle Software

2 Approach
Language Design
Experiment Example
Experiment Synthesis

3 Analysis/Discussion
startsim.sh
car.cfg
laser2d.cfg
imu.cfg
dgclocalnav.cfg

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 37

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline II

Runtime Types

4 Future and Ongoing Work
UA Autonomous Ground Vehicles

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 38

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Goals

Our contribution in this work can be summarized in the following
goals:

Synthesis of experiments from static design

Management of configuration space to permit archives of
previous experiments

A graphical, constraint-based, approach that restricts
ill-advised implementations

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 39

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Configuration Space

Configuration files generally have the following structure:

1 component identity;

2 provided interfaces;

3 required interfaces; and

4 component configuration options.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 40

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Template Configuration File

Component

COMP_TAG.Platform=p1

COMP_TAG.Component=c1

COMP_TAG.Endpoints=e1

Provided interfaces

COMP_TAG.Provides.IFACE_TAG1.Name=i1

COMP_TAG.Provides.IFACE_TAG2.Name=i2

Required interfaces

Direct binding

COMP_TAG.Requires.IFACE_TAG1.Proxy=i1:e1

Indirect binding

COMP_TAG.Requires.IFACE_TAG2.Proxy=i2@p1/c1

Configuration Options

COMP_TAG.Config.SET_TAG1.PARAM_TAG1=0.1

COMP_TAG.Config.SET_TAG1.SET_TAG2.PARAM_TAG2=1

Figure: Sample component identity, provided, and required sections.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 41

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Best Practices

Generally, configuration options represent a static family of
parameters with values that depend on the system under
simulation or test.

Example

Parameterization of optimization choices of a controller

standard deviation of a sensor

For a particular piece of hardware, the configuration options are
used to specify driver information and file information such as the
serial port on which the hardware is located.

Example

The laser2d0 component gets its data from /dev/ser0

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 42

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Language Design

We developed a language to capture data from the configuration
file, as well as the component interconnection, using the GME
toolsuite [8].

Figure: MetamodelSchuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 43

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

A few comments

The language design bears some minor emphasis in a few points:

1 Connections between components are through strong types of
provided/required interfaces

2 Directional associations restrict misconstructions

3 Components can be connected to references of other
components (to permit reuse of all parameters)

4 The configuration space can be hierarchically managed

5 The execution platform can be specified in another aspect
(not shown in this metamodel, for brevity)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 44

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

A few comments

The language design bears some minor emphasis in a few points:

1 Connections between components are through strong types of
provided/required interfaces

2 Directional associations restrict misconstructions

3 Components can be connected to references of other
components (to permit reuse of all parameters)

4 The configuration space can be hierarchically managed

5 The execution platform can be specified in another aspect
(not shown in this metamodel, for brevity)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 45

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

A few comments

The language design bears some minor emphasis in a few points:

1 Connections between components are through strong types of
provided/required interfaces

2 Directional associations restrict misconstructions

3 Components can be connected to references of other
components (to permit reuse of all parameters)

4 The configuration space can be hierarchically managed

5 The execution platform can be specified in another aspect
(not shown in this metamodel, for brevity)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 46

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

A few comments

The language design bears some minor emphasis in a few points:

1 Connections between components are through strong types of
provided/required interfaces

2 Directional associations restrict misconstructions

3 Components can be connected to references of other
components (to permit reuse of all parameters)

4 The configuration space can be hierarchically managed

5 The execution platform can be specified in another aspect
(not shown in this metamodel, for brevity)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 47

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

A few comments

The language design bears some minor emphasis in a few points:

1 Connections between components are through strong types of
provided/required interfaces

2 Directional associations restrict misconstructions

3 Components can be connected to references of other
components (to permit reuse of all parameters)

4 The configuration space can be hierarchically managed

5 The execution platform can be specified in another aspect
(not shown in this metamodel, for brevity)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 48

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Benefits of this design

With these points, the following benefits are enabled:

1 Data dependencies can be analyzed at design time

2 System startup order can be computed, rather than a design
input

3 Execution platform can be changed without changing
component definition/configuration

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 49

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Benefits of this design

With these points, the following benefits are enabled:

1 Data dependencies can be analyzed at design time

2 System startup order can be computed, rather than a design
input

3 Execution platform can be changed without changing
component definition/configuration

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 50

Introduction Approach Analysis/Discussion Future and Ongoing Work

Language Design

Benefits of this design

With these points, the following benefits are enabled:

1 Data dependencies can be analyzed at design time

2 System startup order can be computed, rather than a design
input

3 Execution platform can be changed without changing
component definition/configuration

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 51

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Example

Figure: Configuration of Vehicle Computing Components

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 52

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 53

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 54

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 55

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 56

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 57

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 58

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 59

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 60

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

We use a two-phase traversal, employing the visitor pattern.
1 For each component, a configuration file is created

Name, etc., taken from the graphical model properties
Configuration options gathered from attributes of contained
models
Component and platform interconnection gathered from
various connections

2 Data dependencies analyzed, and experiment script generated

For circular dependencies, a warning is thrown, and arbitrary
order selected
Pauses inserted for the physical system simulator startup, to
avoid unnecessary errors
Loggers, etc., started up and autoconfigured to capture data
with a unique output name
Middleware core services (registry and cache database) started
in the appropriate order, on the appropriate machine

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 61

Introduction Approach Analysis/Discussion Future and Ongoing Work

Experiment Synthesis

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 62

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline I

1 Introduction
The Domain
Autonomous Ground Vehicles
Difficulties in Autonomous Vehicle Software

2 Approach
Language Design
Experiment Example
Experiment Synthesis

3 Analysis/Discussion
startsim.sh
car.cfg
laser2d.cfg
imu.cfg
dgclocalnav.cfg

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 63

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline II

Runtime Types

4 Future and Ongoing Work
UA Autonomous Ground Vehicles

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 64

Introduction Approach Analysis/Discussion Future and Ongoing Work

startsim.sh

startsim.sh

1
2 #!/bin/bash

3 # This script launches a particular demonstration

4 # The script should only be run in the $demo/sys directory

5 # where $demo is your preferred directory (see the

6 # orca2 examples for why this directory is chosen)

7
8 # first, allow processes to dump (up to 1Gb)

9 ulimit -c 2097152

10
11 # DIRECTORY

12 DIRECTORY=basicsim

13
14 # CONFIG Files

15 # Insert them IN THE ORDER You would like to start them!!!!!

16 CONFIG_FILES="car imu faithlocaliser3d laser2d gridmap dgclocalnav waypointlogger highlevelplanner orcaview2d"

17
18

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 65

Introduction Approach Analysis/Discussion Future and Ongoing Work

startsim.sh

19 PLAYER_CMD=player

20 PLAYER_WORLD=gazebocar.cfg

21
22 # use this instead to get ’graphical’ gazebo

23 #SIMULATOR_CMD=wxgazebo

24 SIMULATOR_CMD=gazebo

25
26 # use this instead to get obstacles

27 #SIMULATOR_WORLD=carblankWithObstacles.world

28 SIMULATOR_WORLD=carblank-norender.world

29
30 if [-e ${DIRECTORY}/core] ; then

31 echo "You already have a core file in this directory - removing it in 2 seconds."

32 sleep 2

33 rm ${DIRECTORY}/core*

34 fi

35
36 if [-e /tmp/gazebo-${USER}-0]; then

37 echo "You already have a gazebo dir in /tmp/gazebo-${USER}-0 . I will remove it for you."

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 66

Introduction Approach Analysis/Discussion Future and Ongoing Work

startsim.sh

38 rm -r /tmp/gazebo-${USER}-0

39 fi

40
41 PIDFILE=.pidfile

42
43 # getpid.sh opens a konsole window and returns its pid

44 ./getpid.sh > $PIDFILE

45 sleep 4

46 PID=‘head $PIDFILE‘

47 echo "Using PID=${PID}"

48
49 sleep 1

50
51 if [${SIMULATOR_WORLD} != ""]; then

52 echo "Simulating using ${SIMULATOR_CMD}..."

53 ./dosimulator.sh ${DIRECTORY} ${SIMULATOR_WORLD} ${SIMULATOR_CMD} ${PID}

54 fi

55
56 sleep 2

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 67

Introduction Approach Analysis/Discussion Future and Ongoing Work

startsim.sh

57
58 # do it again for player

59 if [${PLAYER_WORLD} != ""]; then

60 echo "Starting up ${PLAYER_CMD} now..."

61 ./dosimulator.sh ${DIRECTORY} ${PLAYER_WORLD} ${PLAYER_CMD} ${PID}

62 fi

63
64 # uncomment if you want to run your ice stuff locally

65 # make sure that you have a proper ~/.orcarc file, regardles...

66 ./doice.sh ${PID}

67
68 ./doshells.sh ${DIRECTORY} ${PID} ${CONFIG_FILES}

69
70 # we remove the pidfile later, so as to allow

71 # someone else to kill us off...

72 #rm -f $PIDFILE

73

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 68

Introduction Approach Analysis/Discussion Future and Ongoing Work

car.cfg

car.cfg

1 # Orca version 2.2.0+

2
3 # Component

4 Car.Platform=local

5 Car.Component=car

6
7 # Provided Interfaces

8 Car.Provides.DriveBicycle.Name=drivebicycle

9 Car.Provides.Odometry2d.Name=odometry2d

10
11 # Configuration Options

12 # Options are { ’rav4’, ’playerclient’, ’fake’ }

13 Car.Config.ControlDriver=playerclient

14 # Options are { ’rav4’, ’fake’ }

15 Car.Config.DataDriver=playerclient

16 Car.Config.EnableMotion=1

17 Car.Config.Odometry2dPublishInterval=0.1

18 Car.Config.PlayerClient.Host=localhost

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 69

Introduction Approach Analysis/Discussion Future and Ongoing Work

car.cfg

19 Car.Config.PlayerClient.Port=6665

20 Car.Config.VehicleDescription.Control.Type=VelocityBicycle

21 Car.Config.VehicleDescription.Control.VelocityBicycle.MaxForwardAcceleration=1.0

22 Car.Config.VehicleDescription.Control.VelocityBicycle.MaxForwardSpeed=6.0

23 Car.Config.VehicleDescription.Control.VelocityBicycle.MaxReverseAcceleration=1.0

24 Car.Config.VehicleDescription.Control.VelocityBicycle.MaxReverseSpeed=1.0

25 Car.Config.VehicleDescription.Control.VelocityBicycle.MaxSteerAngle=30.0

26 Car.Config.VehicleDescription.Control.VelocityBicycle.MaxSteerAngleAtMaxSpeed=30.0

27 Car.Config.VehicleDescription.Control.VelocityBicycle.MaxSteerAngleRate=40.0

28 Car.Config.VehicleDescription.Geometry.Cuboid.Size=2.667 1.57 1.5

29 # Car.Config.VehicleDescription.Geometry.Cylindrical.VehicleToGeometryTransform=0.0 0.0 0.0 0.0 0.0 0.0

30 Car.Config.VehicleDescription.Geometry.Type=Cuboid

31 Car.Config.VehicleDescription.PlatformToVehicleTransform=0.0 0.0 0.0 0.0 0.0 0.0

32

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 70

Introduction Approach Analysis/Discussion Future and Ongoing Work

laser2d.cfg

laser2d.cfg

1 # Orca version dgc

2
3 # Component

4 Laser2d.Platform=local

5 Laser2d.Component=laser2d0

6
7 # Provided Interfaces

8 Laser2d.Provides.LaserScanner2d.Name=laserscanner2d

9
10 # Configuration Options

11 Laser2d.Config.AllowRollCompensation=1

12 # Valid values are at least: { ’libOrcaLaser2dSickCarmen.so’, ’libOrcaLaser2dPlayerClient.so’, ’libOrcaLaser2dSickAcfr.so’, ’libOrcaLaser2dFake.so’ }

13 #Laser2d.Config.DriverLib=libOrcaLaser2dSickCarmen.so

14 Laser2d.Config.DriverLib=libOrcaLaser2dPlayerClient.so

15 Laser2d.Config.FieldOfView=180.0

16 Laser2d.Config.MaxRange=80.0

17 Laser2d.Config.MinRange=0.0

18 Laser2d.Config.NumberOfSamples=181

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 71

Introduction Approach Analysis/Discussion Future and Ongoing Work

laser2d.cfg

19 # x[m] y[m] z[m] roll[deg] pitch[deg] yaw[deg]

20 #Laser2d.Config.Offset=0.0 0.0 0.0 0.0 0.0 0.0

21 Laser2d.Config.Offset=1.27 0.0 1.5 0.0 0.0 0.0

22 Laser2d.Config.PlayerClient.Device=0

23 # Valid values: { "sicklms200", "stage", "gazebo", "urglaser" }

24 #Laser2d.Config.PlayerClient.Driver=sicklms200

25 Laser2d.Config.PlayerClient.Driver=stage

26 Laser2d.Config.PlayerClient.Host=localhost

27 Laser2d.Config.PlayerClient.Port=6665

28 # Valid values: { 9600, 19200, 38400, 500000 }

29 Laser2d.Config.SickAcfr.Baudrate=38400

30 Laser2d.Config.SickAcfr.Device=/dev/ser1

31 # Valid values: { 9600, 19200, 38400, 500000 }

32 Laser2d.Config.SickCarmen.Baudrate=38400

33 Laser2d.Config.SickCarmen.Device=/dev/ttyS0

34 Laser2d.Config.SickCarmen.LaserType=LMS

35 # length[m] width[m] height[m]

36 Laser2d.Config.Size=0.155 0.155 0.185

37

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 72

Introduction Approach Analysis/Discussion Future and Ongoing Work

imu.cfg

imu.cfg

1 # Orca version 2.1.1+

2
3 # Component

4 Imu.Platform=local

5 Imu.Component=imu

6 Imu.Endpoints=tcp -t 5000

7
8 # Provided Interfaces

9 Imu.Provides.Imu.Name=imu

10 Imu.Provides.Odometry3d.Name=odometry3d

11
12 # Configuration Options

13 Imu.Config.Baud=4800

14 Imu.Config.Device=/dev/ttyS0

15 # Options are { ’playerclientodometry3d’, ’fake’ }

16 Imu.Config.Driver=playerclientodometry3d

17 # x[m] y[m] z[m]

18 Imu.Config.frameOffset=0.0 0.0 0.0 # no IMU offset

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 73

Introduction Approach Analysis/Discussion Future and Ongoing Work

imu.cfg

19 #Imu.Config.frameOffset=-1.27 0.0 0.0 # put the IMU over the rear axle

20 #Imu.Config.frameOffset=1.27 0.0 0.0 # put the IMU over the front axle

21 Imu.Config.PlayerClient.Device=0

22 Imu.Config.PlayerClient.Host=localhost

23 Imu.Config.PlayerClient.Port=6665

24 Imu.Config.StartEnabled=1

25

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 74

Introduction Approach Analysis/Discussion Future and Ongoing Work

dgclocalnav.cfg

dgclocalnav.cfg

1 # Orca version 2.2.0+

2
3 # Component

4 DgcLocalNav.Platform=local

5 DgcLocalNav.Component=dgclocalnav

6
7 # Provided Interfaces

8 DgcLocalNav.Provides.MpcDebugGraphics.Name=mpcgraphics

9 DgcLocalNav.Provides.PathFollower2d.Name=pathfollower2d

10 DgcLocalNav.Provides.TestLocalise.Name=testlocalise

11 DgcLocalNav.Provides.TestOgMap.Name=testogmap

12
13 # Required Interfaces

14 DgcLocalNav.Requires.Localisation.Proxy=localise2d@local/gridmap

15 DgcLocalNav.Requires.Observations.Proxy=ogmap@local/gridmap

16 DgcLocalNav.Requires.Odometry2d.Proxy=odometry2d@local/car

17 DgcLocalNav.Requires.DriveBicycle.Proxy=drivebicycle@local/car

18 #DgcLocalNav.Requires.Lanes.Proxy=lanes@local/lanedetector

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 75

Introduction Approach Analysis/Discussion Future and Ongoing Work

dgclocalnav.cfg

19 #DgcLocalNav.Requires.Lanes.Proxy=lanes@local/highlevelplanner

20
21 # Configuration Options

22 DgcLocalNav.Config.ConnectToLanes=0

23 DgcLocalNav.Config.TestMode=0

24 Ice.MessageSizeMax=3000

25
26 # FIGHT!

27 #DgcLocalNav.Config.DriverLib=libDgcLocalNavMpc.so

28 DgcLocalNav.Config.DriverLib=libDgcLocalNavMpcUcb.so

29
30 # ACFR Options

31 DgcLocalNav.Config.Mpc.ActDelaySec=0.050

32 DgcLocalNav.Config.Mpc.Control.Type=VelocityBicycle

33 DgcLocalNav.Config.Mpc.Control.VelocityBicycle.MaxForwardAcceleration=1.0

34 DgcLocalNav.Config.Mpc.Control.VelocityBicycle.MaxForwardSpeed=6.0

35 DgcLocalNav.Config.Mpc.Control.VelocityBicycle.MaxReverseAcceleration=1.0

36 DgcLocalNav.Config.Mpc.Control.VelocityBicycle.MaxReverseSpeed=1.0

37 DgcLocalNav.Config.Mpc.Control.VelocityBicycle.MaxSteerAngle=30.0

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 76

Introduction Approach Analysis/Discussion Future and Ongoing Work

dgclocalnav.cfg

38 DgcLocalNav.Config.Mpc.Control.VelocityBicycle.MaxSteerAngleAtMaxSpeed=5.0

39 DgcLocalNav.Config.Mpc.Control.VelocityBicycle.MaxSteerAngleRate=20.0

40 DgcLocalNav.Config.Mpc.DisplayDebugGraphics=1

41 DgcLocalNav.Config.Mpc.NumExpansions=400

42 DgcLocalNav.Config.Mpc.NumPrevPlanPerturbations=10

43 DgcLocalNav.Config.Mpc.SpeedFor1MClearance=2.0

44 DgcLocalNav.Config.Mpc.TimeHorizon=8.0

45
46 # UCB Options

47 # increase this value to get better horizon (increases computational time)

48 DgcLocalNav.Config.Mpc.Control.mpcStateHorizon=20

49
50 DgcLocalNav.Config.Mpc.Control.obstacleDelta=0.2

51 DgcLocalNav.Config.Mpc.Control.obstacleConstant=200.0

52 DgcLocalNav.Config.Mpc.Control.obstacleActionDistance=12.0

53 DgcLocalNav.Config.Mpc.Control.laneObstacleDelta=0.7

54 DgcLocalNav.Config.Mpc.Control.laneObstacleConstant=20.0

55 DgcLocalNav.Config.Mpc.Control.laneObstacleActionDistance=0.6

56

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 77

Introduction Approach Analysis/Discussion Future and Ongoing Work

dgclocalnav.cfg

57 # increase these values to improve orientation or position

58 DgcLocalNav.Config.Mpc.Control.qWeightXpos=5.0

59 DgcLocalNav.Config.Mpc.Control.qWeightYpos=5.0

60 DgcLocalNav.Config.Mpc.Control.qWeightOrientation=5.0

61 DgcLocalNav.Config.Mpc.Control.qWeightVelocity=10.0

62 DgcLocalNav.Config.Mpc.Control.qWeightWheelAngle=5.0

63
64 DgcLocalNav.Config.Mpc.Control.rWeightAcceleration=2.0

65 DgcLocalNav.Config.Mpc.Control.rWeightWheelAngleRate=2.0

66
67 DgcLocalNav.Config.Mpc.Control.kNormalizeState=1.10

68 DgcLocalNav.Config.Mpc.Control.kNormalizeInputs=1.00

69 DgcLocalNav.Config.Mpc.Control.kNormalizeObstacles=1.00

70 DgcLocalNav.Config.Mpc.Control.kNormalizeWayline=1.50

71 DgcLocalNav.Config.Mpc.Control.kNormalizeNegativeVelocity=3.00

72
73 DgcLocalNav.Config.Mpc.Control.steeringAngle=1.0

74 DgcLocalNav.Config.Mpc.Control.timestep=0.1

75 DgcLocalNav.Config.Mpc.Control.vehicleBaseLength=2.6

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 78

Introduction Approach Analysis/Discussion Future and Ongoing Work

dgclocalnav.cfg

76
77 DgcLocalNav.Config.Mpc.Control.speedMin=-1.0

78 DgcLocalNav.Config.Mpc.Control.speedMax=6.0

79 DgcLocalNav.Config.Mpc.Control.accelerationMin=-1.0

80 DgcLocalNav.Config.Mpc.Control.accelerationMax=1.0

81 DgcLocalNav.Config.Mpc.Control.wheelAngleMin=-0.523598776

82 DgcLocalNav.Config.Mpc.Control.wheelAngleMax=0.523598776

83 DgcLocalNav.Config.Mpc.Control.wheelAngleRateMin=-0.698131701

84 DgcLocalNav.Config.Mpc.Control.wheelAngleRateMax=0.698131701

85
86 DgcLocalNav.Config.Mpc.Control.useObstacles = 0

87
88 # Experimental variable to put in a fake obstacle

89 Config.Mpc.Control.useFakeObstacle.Default=0

90 Config.Mpc.Control.fakeObstacleLat.Default=85

91 Config.Mpc.Control.fakeObstacleLon.Default=-20

92 Config.Mpc.Control.fakeObstacleSize.Default=5

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 79

Introduction Approach Analysis/Discussion Future and Ongoing Work

Runtime Types

Figure: Running Example

Three different types used:
1 Models created inside this experiment (faithlocaliser3d)
2 Models included as prototypes of a base class (gridmap,car)
3 Pointers to models in a library/repository

(highlevelplanner,laser2d0)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 80

Introduction Approach Analysis/Discussion Future and Ongoing Work

Runtime Types

Figure: Running Example

Three different types used:
1 Models created inside this experiment (faithlocaliser3d)
2 Models included as prototypes of a base class (gridmap,car)
3 Pointers to models in a library/repository

(highlevelplanner,laser2d0)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 81

Introduction Approach Analysis/Discussion Future and Ongoing Work

Runtime Types

Figure: Running Example

Three different types used:
1 Models created inside this experiment (faithlocaliser3d)
2 Models included as prototypes of a base class (gridmap,car)
3 Pointers to models in a library/repository

(highlevelplanner,laser2d0)

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 82

Introduction Approach Analysis/Discussion Future and Ongoing Work

Runtime Types

Why this kind of component reuse?

Prototypes of base classes

Reuse the structure of a component, but change attributes

Pointers to library classes

Force reuse of all attributes of a component, including
structure, but permit different interconnection for
experimentation

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 83

Introduction Approach Analysis/Discussion Future and Ongoing Work

Runtime Types

Constraints

In order to enforce the so called static semantics of our language
we developed constraints, which restrict some (normally allowed)
syntax patterns when used in certain contexts. These constraints
are expressed in an extension of OCL available in GME.

Component.COMP_TAG.trim() <> ""
...
RequiredInterface.connectedFCOs("src")->size <= 1

Figure: Constraints

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 84

Introduction Approach Analysis/Discussion Future and Ongoing Work

Runtime Types

OrcaGUI

Previous releases of the Orca framework provided a GUI to provide
a similar method of specification of configuration files.

Recent Orca releases do not provide this GUI as most users of
Orca are power users, and do not need the graphical syntax.

Our solution provides a more configurable, and also more
structured, modeling environment
Specific differences include:

previous experiments can be easily archived
future experiments can refer to previous/current experiments

Differences from CoSMIC
Our goal is not a generic middleware specification ADL
We focus on robotics experiment domain-specific middleware,
where parameter values and topological rerouting is common
We expect domain experts, but not Orca experts, to become
more confident with Orca through using this tool.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 85

Introduction Approach Analysis/Discussion Future and Ongoing Work

Runtime Types

OrcaGUI

Previous releases of the Orca framework provided a GUI to provide
a similar method of specification of configuration files.

Recent Orca releases do not provide this GUI as most users of
Orca are power users, and do not need the graphical syntax.

Our solution provides a more configurable, and also more
structured, modeling environment
Specific differences include:

previous experiments can be easily archived
future experiments can refer to previous/current experiments

Differences from CoSMIC
Our goal is not a generic middleware specification ADL
We focus on robotics experiment domain-specific middleware,
where parameter values and topological rerouting is common
We expect domain experts, but not Orca experts, to become
more confident with Orca through using this tool.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 86

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline I

1 Introduction
The Domain
Autonomous Ground Vehicles
Difficulties in Autonomous Vehicle Software

2 Approach
Language Design
Experiment Example
Experiment Synthesis

3 Analysis/Discussion
startsim.sh
car.cfg
laser2d.cfg
imu.cfg
dgclocalnav.cfg

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 87

Introduction Approach Analysis/Discussion Future and Ongoing Work

Outline II

Runtime Types

4 Future and Ongoing Work
UA Autonomous Ground Vehicles

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 88

Introduction Approach Analysis/Discussion Future and Ongoing Work

Timing can also be important
c1 c2

f1(x1(t0)) = e(y1(t1))

ωc2

e(x1(t2))

ωc1

t0

t1

t2

t→ ∞

t3

e(x1(t1))

e(y1(t2)) = f2(x1(t1))

f1(x1(t2)) = e(y1(t3)) e(x1(t3))

Figure: Proper timing results in
expected behavior.

c1 c2

ωc2

ωc1

τc1

ωc1

ωc1

ωc2

t0

t1

t2

t→ ∞

t3

t4

t5
t6

t7
t8

after(τc1)

f1(x1(t0)) = e(y1(t1))

e(y1(t3)) = f2(x1(t1))

e(x1(t1))

f1(x1(t0)) = e(y1(t4))

e(x1(t3))

e(x1(t4))

e(y1(t5)) = f2(x1(t4))e(x1(t5))

f1(x1(t3)) = e(y1(t6)) e(x1(t6))

Figure: Improper timing results in
“message chattering”.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 89

Introduction Approach Analysis/Discussion Future and Ongoing Work

Model Transformations for Timing
NewScenairo
Paradigm: Simulation Project: Root Folder Model: Scenairo Aspect: Model Time: Sun Aug 09 05:25:03 PM

Req

C3

Req Pro

C2Pro
Pro

C1

Figure: Example depends on internal
timeouts, if no data are received..

NewScenairo

Paradigm: Simulation Project: Root Folder Model: Scenairo Aspect: Model Time: Sun Aug 09 05:23:43 PM

Req

C3InB

Tim
Out

C3IPBuf

Pro

Pro

C1

InB

Tim
Out

C2IPBuf

Pro

C2InputTrigger

Pro

C3InputTrigger

Req Pro

C2

Figure: Time-triggered buffers
inserted, instead of timeout values.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 90

Introduction Approach Analysis/Discussion Future and Ongoing Work

UA Autonomous Ground Vehicles

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 91

Introduction Approach Analysis/Discussion Future and Ongoing Work

References

A. Makarenko, A. Brooks, and T. Kaupp, “On the benefits of
making robotic software frameworks thin,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS’07) Workshop
on Measures and Procedures for the Evaluation of Robot
Architectures and Middleware (E. Prassler, K. Nilsson, and
A. Shakhimardanov, eds.), November 2007.

J. Sprinkle et al., “Model-based design: a report from the
trenches of the DARPA urban challenge,” Software and
Systems Modeling, vol. 8, pp. 551–566, September 2009.

D. Schmidt et al., “CoSMIC: An MDA generative tool for
distributed real-time and embedded component middleware
and applications,” in OOPSLA 2002 Workshop on Generative
Techniques in the Context of Model Driven Architecture,
Seattle, WA, 2002.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 92

Introduction Approach Analysis/Discussion Future and Ongoing Work

References

T. Collett, B. MacDonald, and B. Gerkey, “Player 2.0: Toward
a practical robot programming framework,” in Proceedings of
the Australasian Conference on Robotics and Automation
(ACRA 2005), 2005.

H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time
motion control core of the Orocos project,” in IEEE
International Conference on Robotics and Automation,
pp. 2766–2771, 2003.

S. Cherry, “Robots incorporated,” Spectrum, IEEE, vol. 44,
pp. 24–29, Aug. 2007.

A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components
for robotics,” in International Conference on Intelligent Robots
and Systems (IROS), pp. 163–168, 2006.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 93

Introduction Approach Analysis/Discussion Future and Ongoing Work

References

Ákos Lédeczi, Árpad Bakay, M. Maroti, P. Volgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai, “Composing
domain-specific design environments,” IEEE Computer,
vol. 34, pp. 44–51, November 2001.

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 94

Introduction Approach Analysis/Discussion Future and Ongoing Work

References

We’re always looking for good graduate students.

http://ece.arizona.edu/

Schuster, Sprinkle Synthesizing Executable Simulations from Structural Models. . . 95

http://ece.arizona.edu/

	Introduction
	The Domain
	Autonomous Ground Vehicles
	Difficulties in Autonomous Vehicle Software

	Approach
	Language Design
	Experiment Example
	Experiment Synthesis

	Analysis/Discussion
	startsim.sh
	car.cfg
	laser2d.cfg
	imu.cfg
	dgclocalnav.cfg
	Runtime Types

	Future and Ongoing Work
	UA Autonomous Ground Vehicles
	

