
An Architectural Approach to the Design and Analysis of
Cyber-Physical Systems

Akshay Rajhans, Shang-Wen Cheng, Bradley Schmerl, David Garlan, Bruce H.
Krogh, Clarence Agbi, Ajinkya Bhave

Carnegie Mellon University

October 6, 2009

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 1 / 30

Outline

1 Motivation and background

2 CPS architectural style

3 Architecture based design and analysis example

4 Behavioral analysis

5 Summary of the contributions

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 2 / 30

Motivation and background

Outline

1 Motivation and background

2 CPS architectural style

3 Architecture based design and analysis example

4 Behavioral analysis

5 Summary of the contributions

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 3 / 30

Motivation and background

Motivation

Today’s approaches

Early separation between cyber and physical parts of system design

Different formalisms and methodologies from CS and engineering

Problem: Tradeoffs and alternatives assesment extremely difficult if cyber
and physical parts tightly coupled

Need for a unified approach that

Blends the heterogenity between software and physical systems

Treats cyber and physical elements equally

Allows for the hierarchical design and compositionality

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 4 / 30

Motivation and background

Typical system design flow

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 5 / 30

Motivation and background

Software architecture like approach for CPS?

A little bit about software architecture (SA)

Typically models a system as a graph of components and connectors

Components: computational elements, e.g., servers, databases, etc.
Connectors: communication pathways, e.g., protocols like RMI, http, etc.
Properties: abstract behavior of elements, e.g., expected load on servers,
communication latencies, transaction rates of databases

What’s good about software architecture?

SA supports:

Structured complexity reduction − abstraction and encapsulation

Uniform treatment − whether implemented in software or hardware

Compositionality − partial analysis of the full system

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 6 / 30

Motivation and background

Software architecture like approach for CPS?

A little bit about software architecture (SA)

Typically models a system as a graph of components and connectors

Components: computational elements, e.g., servers, databases, etc.
Connectors: communication pathways, e.g., protocols like RMI, http, etc.
Properties: abstract behavior of elements, e.g., expected load on servers,
communication latencies, transaction rates of databases

What’s good about software architecture?

SA supports:

Structured complexity reduction − abstraction and encapsulation

Uniform treatment − whether implemented in software or hardware

Compositionality − partial analysis of the full system

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 6 / 30

CPS architectural style

Outline

1 Motivation and background

2 CPS architectural style

3 Architecture based design and analysis example

4 Behavioral analysis

5 Summary of the contributions

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 7 / 30

CPS architectural style

Building a CPS architectural modeling vocabulary

Considerations

Treating cyber and physical elements equally

Balance between generality and specificity

Specificity: focus on embedded monitoring and control systems domain
Generality: keep it general enough so it becomes a foundation for more
specific application areas within this domain

Approach

cyber family − cyber components and connectors

physical family − physical components and connectors

cyber-physical interface family − inherits both cyber and physical families,
adds its own set of elements

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 8 / 30

CPS architectural style

Cyber family

Cyber components

Data Stores:

Hold data, e.g., memory blocks

Computation components:

Operate on and update data, e.g., filters, state estimators, controllers

IO interface software:

Raw readings to/from data in usable form, e.g., smart sensor software

Cyber connectors

Call-return connector:

Represents one-to-one communication between software components, e.g., a
subroutine call

Publish-subscribe connector:

Represents one-to-many communication, e.g., writer with multiple readers

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 9 / 30

CPS architectural style

Physical family

Physical components

Sources:

deliver power, have only output ports (sinks are negative sources)

Energy storage:

elements with dynamics, store energy, power transfer both ways

Physical transducers:

convert energy, e.g., motors - electrical to mechanical

Physical connectors

Power flow connectors:

bidirectional, dynamic coupling between components

Shared-variable connectors:

equality constraints, no directionality

Measurement connectors:

one-way directionality, similar to signal lines in Simulink

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 10 / 30

CPS architectural style

Cyber-physical family

Adds new elements that bridge the gap between computational and physical
systems and model the interactions between them

Cyber-physical components

P2C transducer and C2P transducer components

have ports to cyber elements on one side and ports to physical elements on
the other side

Cyber-physical connectors

P2C and C2P directed connectors

model simple sensors and actuators respectively

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 11 / 30

Architecture based design and analysis example

Outline

1 Motivation and background

2 CPS architectural style

3 Architecture based design and analysis example

4 Behavioral analysis

5 Summary of the contributions

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 12 / 30

Architecture based design and analysis example

A temperature control system

The goal

to maintain the temperature of a room within a desired band around a set
point

The structural elements

a room whose temperature is to be maintained in the desired range

a thermostat that has the set point, and gets the temperature readings from
the room

a furnace heats the room when on, room cools due to the ambient otherwise

The interconnections

room to thermostat: temperature reading

thermostat to furnace: commands to start and stop heating

furnace to room: heat

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 13 / 30

Architecture based design and analysis example

A temperature control system

The goal

to maintain the temperature of a room within a desired band around a set
point

The structural elements

a room whose temperature is to be maintained in the desired range

a thermostat that has the set point, and gets the temperature readings from
the room

a furnace heats the room when on, room cools due to the ambient otherwise

The interconnections

room to thermostat: temperature reading

thermostat to furnace: commands to start and stop heating

furnace to room: heat

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 13 / 30

Architecture based design and analysis example

A temperature control system

The goal

to maintain the temperature of a room within a desired band around a set
point

The structural elements

a room whose temperature is to be maintained in the desired range

a thermostat that has the set point, and gets the temperature readings from
the room

a furnace heats the room when on, room cools due to the ambient otherwise

The interconnections

room to thermostat: temperature reading

thermostat to furnace: commands to start and stop heating

furnace to room: heat

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 13 / 30

Architecture based design and analysis example

Architectural modeling of the thermostat system

Hierarchical design: top level structure

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 14 / 30

Architecture based design and analysis example

Architectural modeling of the thermostat system

Building the substructure of the hierarchical component ‘furnace’ (cyber-physical)

Building the substructure of the hierarchical component ‘room’ (entirely physical)

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 15 / 30

Architecture based design and analysis example

Architectural modeling of the thermostat system

Building the substructure inside the component ‘thermostat’ (entirely cyber)

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 16 / 30

Behavioral analysis

Outline

1 Motivation and background

2 CPS architectural style

3 Architecture based design and analysis example

4 Behavioral analysis

5 Summary of the contributions

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 17 / 30

Behavioral analysis

Behavioral annotation

Behavioral information

Behavioral information not a part of system structure

Pertains to elements or to the whole system

Different formalisms, e.g., textual, FSP, LHA, matlab code, ...

Possibly subject to different implementations

We use the following two formalisms:

Formalism Finite state processes (FSP) Linear hybrid automata (LHA)

State space purely discrete discrete and continuous
Primitive element (primitive) process linear hybrid automata
Composite element composite process linear hybrid automaton
Interaction between synchronizing events synchronizing events
primitive elements continuous inputs

continuous outputs
Analysis tool Labelled Transition Polyhedral Hybrid

System Analyser (LTSA) Automata Verifyer (PHAVer)

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 18 / 30

Behavioral analysis

Behavioral annotation

Behavioral information

Behavioral information not a part of system structure

Pertains to elements or to the whole system

Different formalisms, e.g., textual, FSP, LHA, matlab code, ...

Possibly subject to different implementations

We use the following two formalisms:

Formalism Finite state processes (FSP) Linear hybrid automata (LHA)

State space purely discrete discrete and continuous
Primitive element (primitive) process linear hybrid automata
Composite element composite process linear hybrid automaton
Interaction between synchronizing events synchronizing events
primitive elements continuous inputs

continuous outputs
Analysis tool Labelled Transition Polyhedral Hybrid

System Analyser (LTSA) Automata Verifyer (PHAVer)

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 18 / 30

Behavioral analysis

Furnace process

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 19 / 30

Behavioral analysis

Room process

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 20 / 30

Behavioral analysis

Thermostat process

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 21 / 30

Behavioral analysis

A quick liveness check in LTSA

If room temperature drops, can it always eventually get back to normal?
fluent BEINGCOLD = <cold, {normal, hot}>
fluent BEINGNORMAL = <normal, {cold, hot}>
fluent BEINGHOT = <hot, {cold, normal}>
assert RETURN2NORMAL = [](BEINGCOLD − > <>BEINGNORMAL)

No!
LTL Property Check...
– States: 21 Transitions: 71 Memory used: 8946K
Finding trace to cycle...
Depth 11 – States: 71 Transitions: 266 Memory used: 8832K
Finding trace in cycle...
Depth 1 – States: 1 Transitions: 1 Memory used: 9236K

Violation of LTL property: @RETURN2NORMAL
Trace to terminal set of states:

powerOn
normal BEINGNORMAL
skip BEINGNORMAL
cool BEINGNORMAL
cold BEINGCOLD
heatOn BEINGCOLD
powerOff BEINGCOLD
powerOn BEINGCOLD
cool BEINGCOLD
cold BEINGCOLD
cool BEINGCOLD

Cycle in terminal set:
powerOff BEINGCOLD
powerOn BEINGCOLD

LTL Property Check in: 0ms

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 22 / 30

Behavioral analysis

A quick liveness check in LTSA

If room temperature drops, can it always eventually get back to normal?
fluent BEINGCOLD = <cold, {normal, hot}>
fluent BEINGNORMAL = <normal, {cold, hot}>
fluent BEINGHOT = <hot, {cold, normal}>
assert RETURN2NORMAL = [](BEINGCOLD − > <>BEINGNORMAL)

No!
LTL Property Check...
– States: 21 Transitions: 71 Memory used: 8946K
Finding trace to cycle...
Depth 11 – States: 71 Transitions: 266 Memory used: 8832K
Finding trace in cycle...
Depth 1 – States: 1 Transitions: 1 Memory used: 9236K

Violation of LTL property: @RETURN2NORMAL
Trace to terminal set of states:

powerOn
normal BEINGNORMAL
skip BEINGNORMAL
cool BEINGNORMAL
cold BEINGCOLD
heatOn BEINGCOLD
powerOff BEINGCOLD
powerOn BEINGCOLD
cool BEINGCOLD
cold BEINGCOLD
cool BEINGCOLD

Cycle in terminal set:
powerOff BEINGCOLD
powerOn BEINGCOLD

LTL Property Check in: 0ms

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 22 / 30

Behavioral analysis

Where was the problem?

Observation of what happened

1 there is a power glitch, furnace gets turned off

2 temperature drops and thermostat sends the heatOn command

3 furnace gets powered back on

4 thermostat thinks since it sent the command, furnace must be heating

5 furnace will continute to operate in not heating mode eternally

The problem

Furnace misses the message from thermostat

Thermostat has no knowledge of the actual furnace state

Possible solutions

1 Thermostat to read the actual furnace state

2 Thermostat times out and resends the command

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 23 / 30

Behavioral analysis

Where was the problem?

Observation of what happened

1 there is a power glitch, furnace gets turned off

2 temperature drops and thermostat sends the heatOn command

3 furnace gets powered back on

4 thermostat thinks since it sent the command, furnace must be heating

5 furnace will continute to operate in not heating mode eternally

The problem

Furnace misses the message from thermostat

Thermostat has no knowledge of the actual furnace state

Possible solutions

1 Thermostat to read the actual furnace state

2 Thermostat times out and resends the command

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 23 / 30

Behavioral analysis

Where was the problem?

Observation of what happened

1 there is a power glitch, furnace gets turned off

2 temperature drops and thermostat sends the heatOn command

3 furnace gets powered back on

4 thermostat thinks since it sent the command, furnace must be heating

5 furnace will continute to operate in not heating mode eternally

The problem

Furnace misses the message from thermostat

Thermostat has no knowledge of the actual furnace state

Possible solutions

1 Thermostat to read the actual furnace state

2 Thermostat times out and resends the command

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 23 / 30

Behavioral analysis

Where was the problem?

Observation of what happened

1 there is a power glitch, furnace gets turned off

2 temperature drops and thermostat sends the heatOn command

3 furnace gets powered back on

4 thermostat thinks since it sent the command, furnace must be heating

5 furnace will continute to operate in not heating mode eternally

The problem

Furnace misses the message from thermostat

Thermostat has no knowledge of the actual furnace state

Possible solutions

1 Thermostat to read the actual furnace state

2 Thermostat times out and resends the command

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 23 / 30

Behavioral analysis

Where was the problem?

Observation of what happened

1 there is a power glitch, furnace gets turned off

2 temperature drops and thermostat sends the heatOn command

3 furnace gets powered back on

4 thermostat thinks since it sent the command, furnace must be heating

5 furnace will continute to operate in not heating mode eternally

The problem

Furnace misses the message from thermostat

Thermostat has no knowledge of the actual furnace state

Possible solutions

1 Thermostat to read the actual furnace state

2 Thermostat times out and resends the command

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 23 / 30

Behavioral analysis

Where was the problem?

Observation of what happened

1 there is a power glitch, furnace gets turned off

2 temperature drops and thermostat sends the heatOn command

3 furnace gets powered back on

4 thermostat thinks since it sent the command, furnace must be heating

5 furnace will continute to operate in not heating mode eternally

The problem

Furnace misses the message from thermostat

Thermostat has no knowledge of the actual furnace state

Possible solutions

1 Thermostat to read the actual furnace state

2 Thermostat times out and resends the command

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 23 / 30

Behavioral analysis

Where was the problem?

Observation of what happened

1 there is a power glitch, furnace gets turned off

2 temperature drops and thermostat sends the heatOn command

3 furnace gets powered back on

4 thermostat thinks since it sent the command, furnace must be heating

5 furnace will continute to operate in not heating mode eternally

The problem

Furnace misses the message from thermostat

Thermostat has no knowledge of the actual furnace state

Possible solutions

1 Thermostat to read the actual furnace state

2 Thermostat times out and resends the command

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 23 / 30

Behavioral analysis

Solution 1 - thermostat listens to furnace state

Add a new ‘shutdown notify’ connector

Corrected architecture according to solution 1

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 24 / 30

Behavioral analysis

Solution 1 - thermostat listens to furnace state

Corrected FSP model of thermostat
THERMOSTAT = T[Disabled],
T[s:TSetting] =
(// take the temperature
sense [t:TempSetting] − >
// control
(when (s==Disabled) listenOn − > T[NotHeating]
|when (s!=Disabled) listenOff − > T[Disabled]
|when (s==NotHeating && t==Low) heatOn − > T[Hating]
|when (s==Heating && t==High) heatOff − > T[NotHeating]
|when (t==Normal || (s==Heating && t==Low) || (s==NotHeating && t==High)) skip − > T[s]
)
).

LTSA analysis output
LTL Property Check...
– States: 212 Transitions: 589 Memory used: 6652K

No LTL Property violations detected.
LTL Property Check in: 16ms

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 25 / 30

Behavioral analysis

Solution 2 - use a time-out

Note: no architectural change, just a behavioral change

The strategy

thermostat sends a new command after a time-out interval if the temperature
does not rise

success of the strategy depends on various parameters

time-out interval
rates of cooling and heating of the room, upper and lower bounds if exact
values unknown
magnitude of the hysteresis band in the thermostat, ...

can’t be analyzed in FSP - continuous time, rates, bands, intervals

Use LHA!

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 26 / 30

Behavioral analysis

LHA analysis in PHAVer

PHAVer code − skeleton

automaton thermostat
...
end
automaton furnace
...
end
automaton room
...
end
automaton spec
...
end
sys = thermostat & furnace & room;
is sim(sys,spec);

PHAVer output (For the right values of parameters):

Checking thermostat∼room∼furnace <= spec
− − − − − − − − − − −
Ini states in simulation relation: yes
Finished. Exiting.
− − − − − − − − − −

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 27 / 30

Behavioral analysis

LHA analysis in PHAVer

PHAVer code − skeleton

automaton thermostat
...
end
automaton furnace
...
end
automaton room
...
end
automaton spec
...
end
sys = thermostat & furnace & room;
is sim(sys,spec);

PHAVer output (For the right values of parameters):

Checking thermostat∼room∼furnace <= spec
− − − − − − − − − − −
Ini states in simulation relation: yes
Finished. Exiting.
− − − − − − − − − −

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 27 / 30

Summary of the contributions

Outline

1 Motivation and background

2 CPS architectural style

3 Architecture based design and analysis example

4 Behavioral analysis

5 Summary of the contributions

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 28 / 30

Summary of the contributions

Summary

Summary

uniform treatment of cyber and physical elements is sought

software architecture provides a good starting point

software architecture concepts are extended to cyber-physical systems

new vocabulary for physical and cyber-physical elements is developed

behavioral analysis can perfoermed using various modeling formalisms

alternative structures and design options can be evaluated

Contributions of the paper

architectural styles for modeling cyber-physical systems

behavioral analysis using FSP and LHA

evaluation of alternative architectures

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 29 / 30

Summary of the contributions

Thank you

Acknowledgments

Thanks to my co-authors for their contributions

Thanks to NSF and AFOSR for grants

Thanks to you for patient listening

Akshay Rajhans et al. (CMU) CPS Architectures October 6, 2009 30 / 30

	Motivation and background
	CPS architectural style
	Architecture based design and analysis example
	Behavioral analysis
	Summary of the contributions

