
Budapest University of Technology and Economics
Department of Automation and Applied Informatics

PROCEEDINGS OF THE WORKSHOP ON
MULTI-PARADIGM MODELING: CONCEPTS AND

TOOLS 2006 (MPM06)

Editors:
Holger Giese

Tihamér Levendovszky

BME-DAAI Technical Report Series Volume 2006/1

Holger Giese
Tihamér Levendovszky (Eds.)

Proceedings of the Workshop on
Multi-Paradigm Modeling: Concepts and
Tools 2006 (MPM06)

Genova, Italy, October 3, 2006.

Proceedings of the Workshop on Multi-Paradigm Modeling: Concepts and Tools
2006 (MPM06)

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

1111 Budapest, Goldmann Gy. tér 3.

url http://avalon.aut.bme.hu/mpm06
e-mail: tihamer@aut.bme.hu

tel: +36(1)4632870
fax: +36(1)4632871

Editors:
Holger Giese

Tihamér Levendovszky

ISBN 963 420 878 9

Program Committee

Michael von der Beeck
BMW (DE)

Jean Bezivin
Université de Nantes (FR)

Heiko Dörr
DaimlerChrysler AG (DE)

Jean-Marie Favre
Institut d’Informatique et Mathéma-
tiques Appliquées de Grenoble (FR)

Reiko Heckel
University of Leicester (UK)

Jozef Hooman
University of Nijmwegen (NL)

Gabor Karsai
Vanderbilt University (US)

Anneke Kleppe
University of Twente (NL)

Ingolf H. Krüger
University of California, San Diego
(US)

Thomas Kühne
Technical University Darmstadt (DE)

Juan de Lara
Universidad Autónoma de Madrid
(ES)

Jie Liu
Microsoft Research (US)

Mark Minas
University of the Federal Armed Forces
(DE)

Oliver Niggemann
dSPACE GmbH (DE)

Pieter Mosterman
The MathWorks (US)

Bernhard Schätz
TU Munich (DE)

Andy Schürr
Technical University Darmstadt (DE)

Hans Vangheluwe
McGill University (CA)

Bernhard Westfechtel
University of Bayreuth (DE)

Proc. of the Workshop on Multi-Paradigm Modeling: Concepts and Tools 2006

Table of Contents

Invited Talk
Foundations and Challenges of Multi-Paradigm Modelling 11

Hans Vangheluwe

Regular Papers
A Multi-Paradigm Modeling Approach for Reconfigurable Mecha-
tronic Systems 15

Stefan Henkler and Martin Hirsch

Using a Lattice of Coalgebras For Heterogeneous Model Compo-
sition 27

Jennifer Streb and Perry Alexander

Constructing Multi-Paradigm Modeling Methods based on Method
Assembly 39

Motoshi Saeki and Haruhiko Kaiya

Think Global, Act Local: Implementing Model Management with
Domain-Specific Integration Languages 51

Thomas Reiter et al.

Block Diagrams as a Syntactic Extension to Haskell 67
Ben Denckla and Pieter J. Mosterman

An Integration Concept for Complex Modelling Techniques 81
Benjamin Braatz

Author Index 95

6

Proc. of the Workshop on Multi-Paradigm Modeling: Concepts and Tools 2006

Preface

Today complex software-based systems often integrate different, previously iso-
lated subsystems where different aspects such as the dynamic behavior or static
structure are captured by notations using different formalisms (e.g. statecharts
and user interface models, block diagrams for control, . . .) at different level of
abstractions. Therefore, multiple modeling paradigms have to be integrated for
their model-driven development. This is especially true when - besides general
purpose languages such as UML - domain specific languages are also employed.

Multi-Paradigm Modeling (MPM) aims to simplify the modeling of complex
systems by combining three different directions of research:

• Meta-Modeling, which is the process of modeling formalisms.

• Model Abstraction, concerned with the relationship between models at
different levels of abstraction.

• Multi-Formalism Modeling, concerned with the coupling of and transfor-
mation between models described in different formalisms.

This very first workshop on multi-paradigm modeling addresses the research
related to the issues above as well as the clarification of the basic notions of
multi-paradigm modeling.

We would like to thank all of the people who submitted papers as well as the
Program Committee members who reviewed the submissions.

We wish you a pleasant workshop and nice discussions!

Holger Giese
Tihamér Levendovszky
Chairs

7

Invited Talk

Foundations and Challenges of
Multi-Paradigm Modelling

Hans Vangheluwe
McGill University,

Montréal, Québec, Canada

Abstract. Engineering and Science invariably use models to describe structure as
well as behaviour of systems. Models may have components described in different
formalisms, and may span different levels of abstraction. In addition, model transfor-
mation is commonly used to transform models into domains/formalisms where certain
questions can be easily answered. These various aspects are condensed into the term
"multi-paradigm modelling".

Multi-paradigm concepts are easily applicable to "domain-specific modelling".
Using domain-specific modelling environments maximally constrains users, allow-

ing them, by construction, to only build syntactically correct models.
Furthermore, the domain-specific, often visual syntax used matches the users’ men-

tal model of the problem domain. The time required to construct domain/formalism-
specific modelling and simulation environments can however be prohibitive. Thus,
rather than using domain-specific environments, users resort to generic environments.

Such generic environments are necessarily a compromise.
In this presentation, the foundations of (domain-specific) multi-paradigm mod-

elling will be presented. It will be shown how all aspects of modelling can be explic-
itly (meta-)modeled enabling the efficient synthesis of domain-specific multi-paradigm
modelling environments. Various scientific challenges and open problems such as the
management of model evolution, and the modularisation of transformation models will
be presented. In the examples, our Computer Automated Multi-Paradigm Modelling
(CAMPaM) tool AToM3 (A Tool for Multi-formalism and Meta Modelling) will be
used.

11

Regular Papers

A Multi-Paradigm Modeling Approach
for Reconfigurable Mechatronic Systems

Stefan Henkler
Department of Computer Science

University of Paderborn
Paderborn, Germany

shenkler@uni-paderborn.de

Martin Hirsch
Department of Computer Science

University of Paderborn
Paderborn, Germany

mahirsch@uni-paderborn.de

Abstract. Involved disciplines during the development of reconfigurable mechatronic
systems are control engineering, electrical engineering, mechanical engineering and
software engineering. Due to the different cultures different levels of model abstrac-
tion and different formalisms are used by these different disciplines during the develop-
ment process. Furthermore, different tools are employed for the development of these
systems, as the involved disciplines are familiar with different domain specific tools.
To handle such a multitude of modeling paradigms and tools support for an efficient
approach, which combines the different models and tools is required. In this paper
we show that our Mechatronic UML approach fulfills the needed requirements of a
multi-paradigm modeling approach for reconfigurable mechatronic systems and more-
over we show that this approach addresses the verification and code generation, which
are important and critical aspects during the development process of these systems.
Therefore, these aspects should be considered in a multi-paradigm modeling approach.

Keywords: Multi-Paradigm, Mechatronic Systems, Meta-Model, Modeling, Verifica-
tion and Validation, Code-Generation

1 Introduction
Nowadays, reconfigurable mechatronic systems have reached a complexity that
requires a model-driven development approach to ensure a correct and compet-
itive realization. Due to their nature, reconfigurable mechatronic systems have
strong dependencies between software engineering and control engineering. The
system consists of continuous paradigms, e.g. differential equations, and dis-
crete paradigms, e.g. statecharts, which have dependencies to realize the often
required hybrid behavior of mechatronic systems. Therefore different paradigms
are needed to be combined as for the whole system domain specific expertise is
needed to realize a correct and competitive realization. Looking at the whole

15

A Multi-Paradigm Modeling Approach . . . Stefan Henkler and Martin Hirsch

development of mechatronic systems we have to look not only at the modeling
but also at verification and validation techniques, like formal verification, and
at the code-generation, which need to be combined.

If we look in more detail at the multi-paradigm development approach of
mechatronic systems and further consider Mosterman and Vangheluwe [1], who
identified three orthogonal dimensions for multi-paradigm approaches, which
are i) models of different abstractions, ii) different formalisms, and iii) meta-
modeling, we can see that there is a strong relation between paradigms and
formalisms and between paradigms and different models of abstractions. The
latter one is needed to enable the efficient and correct development of systems
due to the concentration on the relevant aspects of the system requirements by
omitting platform specific aspects. E.g. the behavior is specified by statechart
models and not on code level. The first relation is obvious as e.g. statecharts are
based on a syntactic and semantic definition. Therefore it is obvious that the
problem of the combination of the different paradigms is a problem of transform-
ing a formalism into an other one or the combination of different formalisms.
In Tabular 1 paradigms used in mechatronic systems are presented. In our con-
tribution, we focus on the relation and their mutual influence of the continuous
and event-based paradigms. We show in the following Sections the dependencies
and transformations between these paradigms.

paradigm continuous event-based dynamic struc-
tural adaptation

formalism block diagrams automata story pattern
semantics differential equa-

tions
timed automata graph transfor-

mation systems

Table 1: Paradigms used in Mechatronic UML

Besides the multi-paradigm modeling problem the different domain specific
tools need to be combined to achieve the expertise of the different disciplines
and therefore a one tool approach, which applies the different formalisms and
ensures consistency, is not preferable. Therefore a tool supported approach
needs to maintain the domain specific tools yield a consistency problem.

In this paper, in contrast to prior publications ([2],[3], [4], [5], etc.), which
describe specific parts of the Mechatronic UML approach, we show how
Mechatronic UML addeses the issues of multi-paradigm modeling. The dif-
ferent aspects are shown by a running example, which is introduced in the next
Section 2. Mechatronic UML is introduced in Section 3 and the underly-
ing meta-model is introduced in Sectionsec:metamodel. After that the relevant
techniques modeling (cf. Section 5), Verification and Validation (cf. Section 6),
and Code-Generation (cf. Section 7) are introduced. In Section 8 we discuss the
related work and we finish the paper with a conclusion in Section 9.

16

Stefan Henkler and Martin Hirsch A Multi-Paradigm Modeling Approach . . .

2 Application Example

To outline our multi paradigm approach, we employ an example, which stems
from the RailCab1 research project at the University of Paderborn. Autonomous
shuttles are developed, which operate individually and make independent and
decentralized operational decisions.

The shuttle’s active suspension system and its optimization is one example
for a complex mechatronic system whose control software we design in the fol-
lowing. The schema of the relevant physical model of our example is shown in
Figure 1.

The suspension module is based on air springs, which are damped actively
by the displacement of their bases and three vertical hydraulic cylinders, which
move the bases of the air springs via an intermediate frame – the suspension
frame. The vital task of the system is to provide the passengers a high comfort
and to guarantee safety when controlling the shuttle’s car body. In order to
achieve this goal, multiple feedback controllers are used with different capabili-
ties in matters of safety and comfort [6].

A B C

prop.- valves

A / D

controller

D / A

sensors

hydr. pump

car body

hydr. actuators

air springs

to the
actuators

z

y

a

Figure 1: Scheme of the suspension module

3 Mechatronic UML

The Mechatronic UML approach enables the development of complex mecha-
tronic systems [4]. Components and patterns can be employed to model the
architecture and real-time coordination behavior. An embedding of continuous
blocks into hierarchical component structures permits to integrate controllers
into the component model. The component and pattern definition are sup-

1http://www-nbp.upb.de/en/index.html

17

A Multi-Paradigm Modeling Approach . . . Stefan Henkler and Martin Hirsch

ported by the Fujaba Real-Time Tool Suite2 while the blocks can be specified
with CASE tool CAMeL.3

Discrete behavior of the components and patterns is specified by real-time
statecharts [5] or their hybrid extension hybrid reconfiguration charts [7]. The
provided embedding concepts enable the specification and modular verification
of reconfiguration across multiple components [3].

The Mechatronic UML approach also supports model checking techniques
for the real-time processing at the level of connected mechatronic systems. By
supporting a compositional proceeding for modeling and verification of the real-
time software [2], the approach avoids scalability problems to a great extent.

Mechatronic systems typically are characterized by a high degree of com-
plexity due to the strong cross-coupling of the involved different engineering
disciplines. This complexity originates from the large number of couplings on
various levels of the contributing elements and components, coming from differ-
ent disciplines.

Typically, the development process of a mechatronic system can be repre-
sented by the well-known V-model. During the design process, the V-model is
cycled completely or partially, depending on the individual requirements. Be-
side the V-model there are a couple of other development processes for the
development of mechatronic systems. In all those common models, modeling
(cf. Section 5), verification (cf. Section 6), and code generation (cf. Section 7)
can be identified as the main paradigms.

4 Meta-Model of MechatronicUML

The core of our Mechatronic UML approach is the meta-model. The specific
characteristic is that all above mentioned formalisms are combined by only one
meta-model which becomes possible by a well defined union of all formalisms.

In Figure 2 a cut out of the Mechatronic UML meta-model is depicted.
Both, the time-continuous behavior and structure as well as the continuous con-
trol behavior and structure are integrated in one meta-model. This is reflected
in the Figure by ContinuousComponent (green borderd classes) and Discrete-
Component (blue bordered classes). Furthermore, the hybrid classes (HybridCom-
ponent, HybridPort, HybridComponentInstance, HybridPortInstance) combine both, the
continuous and discrete parts.

5 Modeling

In the context of mechatronic systems typically a superior state diagram em-
beds continuous behavior in form of feedback-controllers, which leads to a hybrid
system. Furthermore, in complex mechatronic systems the feedback-controllers
could be exchanged during runtime, which leads to a reconfigurable system.

2http://www.fujaba.de/
3http://www.ixtronics.de/English/indexE.htm

18

Stefan Henkler and Martin Hirsch A Multi-Paradigm Modeling Approach . . .

Figure 2: Cut out of Mechatronic UML meta-model

A modeling approach therefore have to support distributed, hybrid, and re-
configurable systems with real-time behavior, which should be verifiable and
implementable as discussed in Section 6 and Section 7.

Multi-paradigm modeling is a prerequisite for a successful multi-paradigm
development approach. We therefore show how the here considered domain
specific approach ensure a multi-paradigm modeling approach of the aforemen-
tioned different paradigms like the continuous and discrete one. To order the
different dependencies, we discuss in the next subsections the different aspects
with respect to the structural and behavioral view.

5.1 Structural View

The architecture of the system is based on distributed, interconnected compo-
nents. The components are based on UML 2.0 components but additional we
distinguish between different types of components (see Figure 2). We distinguish
between (discrete) components, hybrid components, and continuous components
(block diagrams). As required in the introduction of the superior Section, com-
ponents can embed other components. Additionally we can distinguish between
component types and component instances.

Figure 3 shows an instance view of the component structure of the suspension
system. There it is shown that a hybrid Monitor component embeds continuous
Sensor and Storage component and moreover a hybrid BodyControl component,
which embeds three different controllers (not shown in the Figure). Based on
the availability of the information of the Storage, which stores track information
of other shuttle, which are communicated from the registry, and the Sensor
the BodyControl can switch between different controller based on the available

19

A Multi-Paradigm Modeling Approach . . . Stefan Henkler and Martin Hirsch

information. Besides the shown embedding of the different paradigms additional
a more abstract view in form of pattern are also supported as shown in the
Figure. A pattern in our case consists of port roles (MonitorRole, RegistryRole)
and a connection between the roles. Besides the structure, a pattern consists
also of a behavioral description (cf. Section 5.2).

Monitor
Role

:Sensor

:Registry

Registry
Role

:Monitor

storage : Storage

:BC

Registration
Monitor−

Figure 3: Structural description of the suspension system

5.2 Behavioral View

In the behavioral view the behavior of a pattern and of a single component
is specified. As shown in Figure 3 the interaction between two components is
specified by a pattern. The behavior of a pattern is described by specifying the
behavior of the port roles. Figure 4 shows the behavior of the Monitor com-
ponent. The lower And-State shows the behavior of MonitorRole and the upper
And-State shows the behavior of the superior behavior of the Monitor component
by embedding the Sensor controller (continuous component), Storage controller,
and different instances of the body controller. As shown in Figure 5(a) the
BodyControl statechart embeds in state Robust the Rob controller, in state Ab-
solute the Abs controller, and in state Reference the Ref controller. The fading
between controller is considered by so called fading transitions, which contain
the relevant information in form of time needed for the fading (bold transitions
in Figure 5(a)). An embedding of components is critical, as we have to guaran-
tee a structural and semantically correct embedding (cf. 6). To abstract from
irrelevant information, we introduce Interface Statecharts (cf. 5(b)). Interface
Statecharts abstract from the embedded controllers and fading functions as for
the correct embedding only the discrete real-time behavior is important (cf. 6).

Summarized, we have seen that besides the structural embedding of the
continuous paradigm also the block diagrams are embedded in the behavioral
description by Hybrid Statecharts as block diagrams describe the structure and
the behavior (cf. Figure 2, HybridComponent, HybridPort, HybridComponentInstance,
HybridPortInstance). Furthermore different abstractions are introduced to reduce
the complexity and concentrate on the relevant aspects. To support the whole
approach we have combined or linked the different modeling paradigms of the

20

Stefan Henkler and Martin Hirsch A Multi-Paradigm Modeling Approach . . .

control engineering and software engineering to enable modeling systems of re-
configurable mechatronic domain.

:Sensor[Off]:BC[Robust]

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

registry.sendInfo(zRef) / storage.add(zRef)

when(storage.isEmpty())

Trajectory
Available

/ registry.experience
data(Vector zRef)!
!storage.isEmpty())
when(

when(nextSegment)
data(Vector zRef)? /

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailableAllAvailable

sensor.failure

when(nextSegment)
data(Vector zRef)? /

registry.experience
noData! /

after(20) /
registry.requestInfo

TrajectoryNot
Available

���

��� ���

���

Figure 4: Behavior description of the Monitor

(a)

zAbsFailure

zAbsOK

Robust

Reference

Absolute

zRefOK

zAbsFailure

zAbsOK

zRefFailure

<Abs>

<Ref>

<Rob>

d4

d2

ffade2

ffade1

z̈abs

z̈abs

zref
d1

d3

ffade3

ffade4

(b)

zRefOK

zAbsFailure

zAbsOK

zRefFailure

zAbsOK

[Robust]

[Absolute]

zAbsFailure

[Reference]

d2

d3

d1

d4

z̈abs

zref

z̈abs

Figure 5: BodyControl (5(a)), and the interface state chart (5(b))

6 Verification and Validation
In this section we discuss the verification and validation phase of the develop-
ment process of mechatronic systems. Therefore we look at formal verification

21

A Multi-Paradigm Modeling Approach . . . Stefan Henkler and Martin Hirsch

and show the transformation of the modeling formalisms to the (model) formal-
ism of the formal verification.

In Figure 6 a sketch of the compositional and modular verification of our
Mechatronic UML models is depicted. For the outlined Mechatronic UML
approach, two specific verification tasks for the resulting systems are supported.
At first the real-time coordination of the system, which is modeled with compo-
nents and connectors are only interconnected by verified coordination patterns
(cf. Section 5), can be verified using a compositional model checking approach
[2]. To achieve this, we first use abstraction and furthermore, we transform the
model formalism (real-time statecharts) to the formalism of the formal verifica-
tion (time automata). Secondly, a restricted subset of the outlined hierarchical
component structures for modeling of discrete and continuous control behavior
can be checked for the consistent reconfiguration and proper real-time synchro-
nization w.r.t. reconfiguration [3][8]. In addition, the second approach can be
embedded into the first one by ensuring the verification steps that the synchro-
nization with the subordinated components within the hierarchical structures
does only result in a refined behavior such that the verification results for their
interconnection via verified patterns still hold. The second approach performs
the abstraction and formalism transformation as the first approach and addi-
tionally support the abstraction of the hybrid system.

Figure 6: Overview about compositional and modular verification

7 Code-Generation

The Mechatronic UML approach applies the model-driven development ap-
proach to develop software systems at a high level of abstractions to enable
analysis approaches like model checking [5] as shown in Section 6. Therefore,
ideally, we start with platform independent models as shown in Section 5 to
enable the compositional formal verification. Afterward, the platform indepen-

22

Stefan Henkler and Martin Hirsch A Multi-Paradigm Modeling Approach . . .

dent model must be enhanced with platform specific information to enable code
generation. The needed platform specific information are based on a platform
model, which specifies the platform specific worst case execution times and
furthermore we add platform specific information like priorities, periods, and
deadlines to the models. After specifying the platform specific information we
can generate code from the models. We therefore apply three different models
of abstraction, like the MDA approach, with conformable transformations.

The presented seamless approach is realized by the Fujaba Real-Time Tool
Suite. As mentioned in Section 3 we integrate the Fujaba Real-Time Tool Suite
with the CASE Tool CAMeL and therefore use the ability of CAMeL to generate
code. As shown in Figure 7 both tools export hybrid components, which are
integrated into a hierarchical model as a input for the binding tool. The export
of the tools includes already the transformation of the model formalism to a
code formalism, like C++. Afterward, the binding tool combine the inputs and
therefore combines both formalisms.

Fujaba

:Clock

:Flywheel

:Pendulum

Hybrid Components

:Clock[Flywheel]

:Clock[Pendulum]

[unwound]

[woundUp]

Hybrid Statecharts�
�

sin
2

2

g
dt

d
���

:Pendulum

:Flywheel

�
�

cos
2

2

�
dt

d
r

Hybrid Components

:Clock

�
�

sin
2

2

g
dt

d
���

:Pendulum

:Flywheel

�
�

cos
2

2

�
dt

d
r

Integrated Hybrid Model

IPANEMA

Executable System

int main()
{

initialize();
}

Dynamics Model

�
�

cos
2

2

�
dt

d
r

�
�

sin
2

2

g
dt

d
���

Deployment

Deployment

CAMeL

Binding
Tool

XMLXMLXML

CodeCodeCode

XML

Figure 7: Tool Integration Overview [9]

8 Related Work

In [1] the field of Computer Automated Multi-Paradigm Modeling (CAMPaM) is
introduced. This approach defines a domain-independent framework for multi-
paradigm modeling that consists of three dimensions: (i) multi-abstraction, (ii)
multiple formalisms, and (iii) meta-modeling. Due to the use of transformation
techniques multiple formalisms are linked.

A multi-paradigm modeling approach within a Petri-Net framework for hy-
brid dynamic systems is presented in [10]. Based on the multi-paradigm model-
ing concept, modeling schemes of the hybrid system are separated, but combined
in a hierarchical way through specified interfaces.

23

A Multi-Paradigm Modeling Approach . . . Stefan Henkler and Martin Hirsch

Ptolemy [11] supports different models of computation (semantic domains).
It supports semantics for continuous time, discrete time, timed multitasking,
etc. Furthermore it supports combination and integration of these semantic
domains.

The de facto industry standard for modeling mechatronic systems with hy-
brid behavior is MATLAB/Simulink and Stateflow4. Here block diagrams and
classical control engineering concepts have been integrated with a statechart
dialect named Stateflow. The MATLAB/Simulink based tool CheckMate can
be used to verify MATLAB/Simulink and Stateflow models.

The presented approaches support modeling and simulation but all these ap-
proaches fail in supporting a formal verification technique like model checking.
As this must be considered in a multi-paradigm approach for complex techni-
cal systems like reconfigurable mechatronic systems, these approaches fail in
supporting all levels of a multi-paradigm approach.

9 Conclusion

In this paper we presented Mechatronic UML a multi-paradigm modeling
approach for reconfigurable mechatronic systems. We have shown that Mecha-
tronic UML combines the different modeling paradigms of the software en-
gineering and control engineering as both disciplines are inherently involved in
the development of reconfigurable mechatronic systems. To reflect the problems
during the whole development process, we address besides the modeling model-
checking and code-generation with respect to the multi-paradigm approach.

Acknowledgements We thank Holger Giese for his comments on earlier ver-
sions of this article. This work was developed in the course of the Special
Research Initiative 614 - Self-optimizing Concepts and Structures in Mechani-
cal Engineering - University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft. Supported by University of
Paderborn

References

[1] P. J. Mosterman and H. Vangheluwe, “Computer automated multi-
paradigm modeling: An introduction,” in Journal on Simulation, vol. 80,
pp. 433–450, SAGE, 2004.

[2] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake, “Towards the
Compositional Verification of Real-Time UML Designs,” in Proc. of the
9th European software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software engineering
(ESEC/FSE-11), pp. 38–47, ACM Press, September 2003.

4http://www.mathworks.com

24

Stefan Henkler and Martin Hirsch A Multi-Paradigm Modeling Approach . . .

[3] H. Giese, S. Burmester, W. Schäfer, and O. Oberschelp, “Modular Design
and Verification of Component-Based Mechatronic Systems with Online-
Reconfiguration,” in Proc. of 12th ACM SIGSOFT Foundations of Software
Engineering 2004 (FSE 2004), Newport Beach, USA, pp. 179–188, ACM
Press, November 2004.

[4] S. Burmester, H. Giese, and M. Tichy, “Model-Driven Development
of Reconfigurable Mechatronic Systems with Mechatronic UML,” in
Model Driven Architecture: Foundations and Applications (U. Assmann,
A. Rensink, and M. Aksit, eds.), LNCS, pp. 1–15, Springer Verlag, 2005.

[5] S. Burmester, H. Giese, and W. Schäfer, “Model-driven architecture for
hard real-time systems: From platform independent models to code,” in
Proc. of the European Conference on Model Driven Architecture - Foun-
dations and Applications (ECMDA-FA’05), Nürnberg, Germany, Lecture
Notes in Computer Science (LNCS), pp. 25–40, Springer Verlag, November
2005.

[6] T. Hestermeyer, P. Schlautmann, and C. Ettingshausen, “Active suspen-
sion system for railway vehicles-system design and kinematics,” in Proc. of
the 2nd IFAC - Confecence on mechatronic systems, (Berkeley, California,
USA), December 2002.

[7] S. Burmester, H. Giese, and M. Hirsch, “Syntax and semantics of hybrid
components,” Tech. Rep. tr-ri-05-264, University of Paderborn, October
2005.

[8] H. Giese and M. Hirsch, “Modular verificaton of safe online-reconfiguration
for proactive components in mechatronic uml,” in Satellite Events at
the MoDELS 2005 Conference: MoDELS 2005 International Workshops
OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME, MODAUI, NfC,
MDD, WUsCAM, Montego Bay, Jamaica, October 2-7, 2005, Revised Se-
lected Papers (J.-M. Bruel, ed.), vol. 3844 of Lecture Notes in Computer
Science, pp. 67–78, Springer Verlag, 2006.

[9] S. Burmester, H. Giese, and F. Klein, “Design and Simulation of Self-
Optimizing Mechatronic Systems with Fujaba and CAMeL,” in Proc. of
the 2nd International Fujaba Days 2004, Darmstadt, Germany (A. Schürr
and A. Zündorf, eds.), vol. tr-ri-04-253 of Technical Report, pp. 19–22,
University of Paderborn, September 2004.

[10] J.-S. Lee, M.-C. Zhou, and P.-L. Hsu, “A multi-paradigm modeling ap-
proach fpr hybrid dynamic systems,” in Proceedings of the 2004 IEE
Conference o Computer Aided Control Systems Design, Taipei, Taiwan,
Septemper 2-4, pp. 77–82, IEEE Computer Press, September 2004.

[11] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao,
and H. Zheng, “Overview of the Ptolemy Project,” TechReport UCB/ERL
M03/25, Department of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley, July 2003.

25

Using a Lattice of Coalgebras For
Heterogeneous Model Composition

Jennifer Streb
Information and Telecommunication Technology Center

The University of Kansas
jenis@ittc.ku.edu

Perry Alexander
Information and Telecommunication Technology Center

The University of Kansas
alex@ittc.ku.edu

Abstract. System-level design is characterized by a need to bring together concurrent
information from numerous domains to assess the impact of local decisions on global
properties. As such, to support system-level design a language must minimally ad-
dress heterogeneous specification, specification transformation and specification com-
position. We propose a semantics for defining these operations based on a lattice of
coalgebraic system models. Within this lattice we can provide formal definitions for
safety using Galois connections, specification transformation using functors, and spec-
ification composition using the classical sum and product operations from category
theory. Embodied in the Rosetta specification language, this semantics has proved
useful in assessing system level properties such as power consumption and security.
This paper overviews the semantics and provides a simple example of its use.

Keywords: Heterogeneous Specification, Coalgebraic Semantics, Specification Com-
position

1 Introduction

The essence of system-level design is bringing together information from mul-
tiple, concurrent domains to assess global effects of local decisions. Thus, for
any language or semantic system to address system-level design needs it must
support the representation of heterogeneous information and support composi-
tion of information across domains. The Rosetta language and semantics [1, 2]
are designed explicitly to support the needs of system-level design. It supports
heterogeneous specification by providing a collection of domains that provide
vocabulary and semantics for writing specifications and the domain lattice that
supports transforming and composing information across domains. In this pa-
per, we will eschew discussion of the main body of the Rosetta syntax, instead
concentrating on the semantic infrastructure required to construct the domain
lattice, transform, and compose models.

27

Using a Lattice of Coalgebras . . . Jennifer Streb and Perry Alexander

2 Background

Models in Rosetta are referred to as facets and are the fundamental unit of
specification. Each facet represents one aspect or view of a multi-aspect sys-
tem. Information such as component function, performance constraints, and
structure are all represented using facet models. The key is that each facet
represents a system from one perspective using a semantic basis appropriate for
the information being represented. A complete system model composes facets
representing multiple perspectives into a composite system model. The domain
lattice provides support for these operations and a foundation for safety assur-
ance while coalgebras form the semantic basis for individual models.

2.1 The Domain Lattice

Vocabulary and semantics for defining facets are provided by domains. Each
domain provides to varying degrees units of semantic representation, a model
of computation, and a domain specific modeling vocabulary. Ideally, a domain
defines a collection of definitions that characterize a particular computation or
modeling style. This may vary from simply unit-of-semantic definitions like the
state_based domain that defines a simple stateful computation model to complex
engineering domains like the digital domain that provides a complete semantics
for writing digital system models.

When a facet is defined, it is declared as an element of a domain and inherits
all of that domain’s declarations. Formally, the new facet extends a domain to
define a new model. For example, if a register facet is defined of type state_based,
then the concepts of state, change and event are available as a built-in part of
the specification vocabulary. In this way, a facet’s associated domain defines its
type and the type associated with a domain is the collection of consistent facets
that can be defined by extending it.

When a new domain is defined, it is declared as a subdomain of an existing
domain. Like facets, the new domain extends the original domain and inherits
all of that domain’s declarations. If a new discrete_time domain is defined as
a subtype of state_based, then the notions state and change are inherited and
refined within the new domain. The distinction between defining a domain and
defining a facet is the domain can be further refined to define facets or other
domains. When a facet is defined, it cannot be extended and defines a leaf in
the domain.

The collection of domains and the extensions used to define them define a
tree that is referred to in Rosetta as the domain lattice. The set of domains, D,
together with the homomorphism relationships resulting from extension define
a partially ordered set (D,⇒). Join (t) and meet (u) can subsequently be
defined as the least common supertype and greatest common subtype of any
pair of domains. It can easily be proved that any domain pair will in fact have
a least common supertype and a greatest common subtype. The null domain
is the least domain in the collection and all domains inherit from it. bottom

28

Jennifer Streb and Perry Alexander Using a Lattice of Coalgebras . . .

is the greatest domain and inherits from all domains making it inconsistent.
Specifically:

∀f :: facet · bottom⇒ f ∧ f ⇒ null

Including null and bottom with the partially ordered set (D,⇒) defines a
lattice whose top and bottom elements are null and bottom respectively:

(D,⇒,t,u, null, bottom)

2.2 Coalgebraic Semantics

The domain lattice organizes domains but says nothing about the semantics
of domains and facets. A facet’s underlying semantics are denoted by a coal-
gebra [3] defining observations on an abstract state, X . The signature for a
general coalgebra is:

〈x, y, z, s〉 :: X → Tx × Ty × Tz × Ts

where x, y, z, and s are observations on X and Tx through Ts are the types of
those observations. When s is treated as state, this signature has the form of a
classic Rosetta facet coalgebra. For any observation, x, made relative to state,
the associated type will be:

Ts → Tx

a functional mapping from a state value to a value of the type associated with
the observation. One particularly important observation is the next state given
by next(s):

Ts → Ts

mapping one system state observation to another.
A facet’s signature defines its associated coalgebra signature and its terms

define the coalgebra function by placing constraints on individual observations.
This denotation is relatively straightforward and will not be discussed in detail
here. It suffices to understand that the parameters and declarations defined in
a facet signature define observations on X .

We choose coalgebras over their better known duals, algebras, due to the
non-terminating and heterogeneous nature of the types of systems we model.
Coalgebras are more natural than algebras for representing non-terminating
systems. The inductive proof theory associated with algebras requires a base
case or initial state that may not exist in many embedded systems. As stream
transformers, coalgebras and their associated proof techniques are well equipped
to deal with reactive, non-terminating embedded systems.

The heterogeneous nature of system-level specifications requires that mul-
tiple computation models be considered during modeling and analysis. In the
coalgebra, X can be held abstract with no associated concrete type. In this case,

29

Using a Lattice of Coalgebras . . . Jennifer Streb and Perry Alexander

Rosetta states simply become observations of the abstract state making multiple
simultaneous state observations possible. Furthermore, by defining relationships
between states in different domains, one can relate information associated with
one state observation to information associated with other state observations.
This critical feature allows determination of when information observed in one
domain impacts information observed in another.

3 Lattice of Coalgebras

The result of the domain lattice definition and the coalgebraic semantics of
facets is a lattice of coalgebras that serves as the underlying Rosetta semantics.
With this semantic basis, we can now put the domain lattice to work defining
specification transformation and composition. Additionally, the lattice facili-
tates establishing the safety of such operations using Galois connections. Each
of these is critical to supporting model heterogeneity and composition necessary
for system-level design. Figure 1 shows a part of the lattice of domains defined
for traditional Rosetta specifications.

Functors and products discussed in this section and homomorphisms dis-
cussed earlier are examples of reflective Rosetta operations making up the facet
algebra used to compose specifications. Products compose specifications and
functors transform specifications to define new specifications. Homomorphism
is a relation over specification pairs. Other important facet algebra operations
include equivalence (isomorphism), relabeling and instantiation.

static

state_based(state_type::type)
state_based()

signal_based(event_type::type)
signal_based()

finite_state(state_type::type)
finite_state()

infinite_state(state_type::type)
infinite_state()

continuous_temporal(state_type::type)

discrete_temporal(state_type::type; delta_val::state_type)

null

trace_based(event_type::type)
trace_based()

process_based(event_type::type)
process_based()

discrete_time() continuous_time()

frequency()

digital()
discrete_event()

tagged_event()CSP()

pi_calculus()

Figure 1: The Rosetta Domain Lattice

30

Jennifer Streb and Perry Alexander Using a Lattice of Coalgebras . . .

3.1 Functors and Specification Transformation

A functor in the domain lattice is a function specifying a mapping from one
domain to another. The primary role of functors in the domain lattice is to
transform a model in one domain into a model in another. Viewing each domain
and facets comprising its type as a subcategory of the category of all Rosetta
specifications, a functor is simply a mapping from one subcategory to another.
Any model in the original category can be transformed into a model in the
second. This corresponds to the classic definition of functors in category theory.

When defining domains by extension, two kinds of functors result. Instances
of concretization functors, Γ, are defined each time one domain is extended
to define another. Abstraction functions, A, are the dual of concretization
functions and are known to exist for each Γ due to the multiplicative nature of
extension. So, Γ instances move down in abstraction while A instances move
up. In Figure 1 Each arrow moving from one domain down to another defines
both an instance of Γ and A. However, A and Γ do not form an isomorphism
because A is lossy – some information must be lost or A cannot truly be an
abstraction function.

3.2 Safety and Galois Connections

Abstract interpretation [4] provides a capability for focusing analysis by elimi-
nating unneeded detail from a specification. Among the most challenging prob-
lems in abstract interpretation is assuring that once the abstraction is performed
the resulting model is faithful to the original. This is the notion of safety – assur-
ing that when an abstraction is performed, the information retained is correct.

In the case of the Rosetta domain lattice, we need to verify the safety of
functors moving specifications up and down the lattice. More specifically, we
want to verify that by moving a specification or model between Rosetta domains
we do not sacrifice correctness. Establishing a Galois connection [5] between
domains in the lattice provides exactly this assurance.

A Galois connection (C,α, γ, A) exists between two complete lattices (C, v)
and (A, v) if and only if

α : C → A ∧ γ : C ← A

are monotone functions that satisfy:

γ ◦ α w λc.c (1)

α ◦ γ v λa.a (2)

The two conditions above express that we do not sacrifice safety by going
back and forth between the two domains although we may lose precision. For our
purposes the notion of precision isn’t important. We simply want to assure that
by moving back and forth between domains we maintain a safe approximation
of the original model.

31

Using a Lattice of Coalgebras . . . Jennifer Streb and Perry Alexander

Condition 1 states that abstraction (α) followed by concretization (γ) of a
specification or model results in either the same specification or model, or one
more abstract than the original yet still safe. Condition 2 states that concretiza-
tion followed by abstraction of a specification or model will result in either that
same specification or model, or one less abstract than it.

We have stated that extension of one domain to form another gives us a
concretization function, Γ, that defines a homomorphism between domains. Be-
cause Γ is multiplicative, we are assured by nature of the lattice that an inverse,
A, exists and can be derived from it. Thus, for any domain pair that is ordered
by the lattice, we can define functors that move a specification between them.

With the domain lattice, A, Γ and the homomorphism, we can now define a
Galois connection between any Rosetta domain, D0, and any of its subdomains,
D1, as (D0, A1,Γ1, D1). With the existence of the Galois connection we can
now assure safety of any transformation between these two domains. Further-
more, the “functional composition” of two Galois connections is also a Galois
connection [5]. Formally, if (D0, A1,Γ1, D1) and (D1, A2,Γ2, D2) are Galois
connections then

(D0, A2 ◦A1,Γ1 ◦ Γ2, D2)

is also a Galois connection. This is important because not only can we assure
safety between any domain and its subdomain, but we can also assure safety of
any transformation throughout the entire domain lattice.

The existence of the Galois connections are advantageous. They allow us
to perform abstract interpretation with the certainty of the entire system still
functioning as expected. They also allow multiple perspectives of a specification
with the assurance of safety throughout. Additionally, we are guaranteed safety
of any transformation within the entire Rosetta domain lattice due to the ability
to functionally compose Galois connections.

3.3 Specification Composition
Heterogeneous specification truly becomes useful only when specifications can
be combined to understand interactions. The domain lattice as presented thus
far supports writing specifications using multiple models of computation and
satisfies our goal of heterogeneity. Looking at the domain lattice from a categor-
ical perspective enables using standard product and sum operations to perform
composition.

The primary specification composition mechanisms in the Rosetta seman-
tics are the product and pullback constructions [6]. A specification product is
simply a pair of specifications that simultaneously describe a system. Because
the specifications simultaneously hold, they must be mutually consistent. Mu-
tual consistency between specifications in different domains implies consistency
among heterogeneous specifications – precisely a goal of system-level design.

How can two specifications from distinct domains ever be inconsistent?
Specifically, if two domains are distinct, then properties defined in one domain
cannot reference the other because there are no shared symbols. The answer

32

Jennifer Streb and Perry Alexander Using a Lattice of Coalgebras . . .

lies in functors used to move information from one domain to another and in
the pullback used to define the product.

In the traditional formal specification literature where algebraic semantics
dominate, the coproduct and pushout are the dominant specification composition
constructions [6, 7, 8]. Traditionally, a pushout of specifications forms the union
of two specifications where shared specification that is jointly constrained in
both specifications. With coalgebras, the product is the appropriate composition
operator as we are looking for an interaction.

Formally, Given two models A and B the product is formed from the disjoint
combination of A and B. As the composition is disjoint, there is no possibility
of interaction. A pullback is a special construction for forming a product where
each element is derived from a common specification, C. The elements of C are
shared between specifications – when properties from A and B refer to elements
of C, they are the same element. Properties placed on symbols of C from each
specification mutually constrain C and A and B are no longer orthogonal.

4 Application Methodology

With semantic elements in place, we can outline a methodology for their appli-
cation in a specification process. We start by defining specifications for system
facets of interest. Functors defined by homomorphisms in the domain lattice
are then used to move specifications to appropriate domains for composition
and analysis. We then compose specifications using facet product operations.
Finally, we verify the consistency of resulting specifications using simulation,
theorem proving and model checking, and synthesize specifications into imple-
mentations using synthesis and compilation techniques. The resulting method-
ology is both effective and mathematically sound due to the Galois connections
defined over the domain lattice.

4.1 Define Facet Specifications

The initial specification task is selecting specification domains for each relevant
system requirements model and defining facet specifications for those models.
A classic example from the Rosetta literature we use here is power-aware de-
sign where implementation fabric selection is a design decision made by under-
standing the interaction between functional requirements and power constraints.
Example specifications are shown in Figure 2.

To effectively select domains and write specifications, the goals of the sys-
tem analysis processes must be known. One must begin with the end in mind
regardless of the system analysis methodology. Rarely does any system design
process, specification or otherwise, yield anything useful that was not planned
from the beginning.

33

Using a Lattice of Coalgebras . . . Jennifer Streb and Perry Alexander

facet power
(o ::output top;
leakage , switch :: design real)
:: state_based is

export power;
power:: real ;

begin
power’ = power + leakage +

if event(o) then switch
else 0

end if ;
end facet power;

facet interface function
(i :: input real ; o ::output real ;
clk :: in bit
uniqueID::design word(16);
pktSize :: design natural)
:: discrete_time is

uniqueID :: word(16);
hit :: boolean;
bitCounter :: natural ;

end facet interface function ;

Figure 2: Rosetta specification fragments defining power consumption and
functional models for a TDMA unique word detector. Due to space constraints,
only the interface is shown for the functional model.

4.2 Transform Specifications for Analysis

Moving specifications using functors accomplishes two basic tasks: (i) moving
a specification to an analysis domain; or (ii) moving a specification to a do-
main for composition with another specification. In the former case, specifiers
move definitions from descriptive domains to new domains better equipped for
analysis. In the latter case, specifiers move definitions to new domains where
specification composition yields new, more detailed specifications. The Galois
connections established over the Rosetta domain lattice guarantee the safety of
abstraction and concretization functors.

Specifications for our example component exist in different domains that
could be composed immediately using the product operation. In this case how-
ever, a more accurate performance prediction can be made if the specifications
are composed in the same domain. Thus, we have three options: (i) Move the
power specification to the discrete_time domain; (ii) move the functional specifi-
cation to the state_based domain; or (iii) move both specifications to a common,
intermediate domain. For this example, we choose to move the power specifi-
cation into the discrete_time domain by applying a concretization functor. This
decision is motivated by the existence of a discrete_time simulation environment
exists that can be used to analyze the resulting specifications. The built-in
concretization function for moving state_based specifications to discrete_time,
gamma, is used for this task:

gamma(power());

The beauty of using gamma functions defined by the domain lattice is that
if the extension between domains used to form the concretization function is
consistent, gamma exists, alpha exists and the Galois connection assures their
soundness. Thus, when moving the power specification above, we are certain

34

Jennifer Streb and Perry Alexander Using a Lattice of Coalgebras . . .

that the resulting specification in its new domain will be sound with respect to
the original specification.

4.3 Compose Specifications

After transforming specifications into appropriate domains, the facet product
is used to compose specifications. The specification product is formed from
the power specification in the discrete_time domain and the original function
specification. This new product facet is defined in Figure 3 using the application
of gamma and the product operation.

facet power_and_function
(i :: input real ; o ::output top; clk :: in bit ; uniqueID::design word(16);
pktSize :: design natural ; leakage , switch :: design real):: discrete_time is

gamma(power(o,leakage,switch))
∗ function (i ,o, clk ,uniqueID,pktSize);

Figure 3: Creating the composite specification by forming the product of the
functional specification with the application of gamma to the power specification.

The product does far more than simply pair the specifications. Both speci-
fications inherit a definition of time from the discrete_time domain. Specifically,
a time value (t), quanta (delta) and next time function (next) are defined in
discrete_time.

The product treats the discrete_time domain as a shared specification among
the power and function models. The specification objects that t, delta and next
refer to are shared between the specifications. Edges that indicate state change
and power consumption are common to both components implying that process-
ing in the functional specification results in power consumption in the power
model. Any property defined on these items in one specification must be con-
sistent with definitions in the other – they are literally shared between the
specifications. Other symbols remain orthogonal, but when referenced in prop-
erties relating them to shared symbols they are indirectly involved in shared
properties across domains.

4.4 Verification and Synthesis

With the composite model constructed, verification and synthesis are performed
to predict system behavior and generate system components. Any system with
a semantics compatible with the resulting Rosetta model can be used for analy-
sis. In this case, simulation is performed by defining a domain associated with
the simulator and using a functor to make the transformation. To preserve
soundness, a verification obligation remains to show that simulator behavior is
consistent with the domain describing it. Although non-trivial, this analysis is
performed once per tool.

35

Using a Lattice of Coalgebras . . . Jennifer Streb and Perry Alexander

5 Related Work

Possibly the most visible work in heterogeneous modeling is the Universal Mod-
eling Language (UML) [9, 10, 11]. Initially developed for object-oriented soft-
ware systems, UML has expanded to digital hardware, embedded software and
most recently system-level modeling. UML employs a collection of diagramming
techniques whose semantics are customised using profiles specific to different do-
mains.

UML meta-models provide additional semantics for heterogeneous systems
that has been exploited for domain specific tool development and model-
integrated design [12]. The model-integrated approach reflects our approach
to model refinement and abstraction as the central features in design synthesis
and analysis respectively. The model-integrated approach uses UML as its mod-
eling language, although like the coalgebraic semantics presented here it should
not be limited to UML models.

Viewpoints [13, 14, 15, 16] is a software specification technique where mul-
tiple perspectives of a software system are recorded. Viewpoints are less formal
than Rosetta and focus primarily on software systems. However, interaction be-
tween models searching for inconsistencies has been explored extensively giving
Viewpoints a similar system-level focus[17, 18, 19].

An alternative approach using operational modeling is the Ptolemy [20, 21]
project. Ptolemy (now Ptolemy Classic) and Ptolemy II successfully compose
models using multiple computation domains into executable simulations and
actual software systems. Ptolemy II introduces the concept of a system-level
type that provides temporal information as well as traditional type information.
Specifically, the temporal characteristics of a type become a part of its descrip-
tion. Like Rosetta, Ptolemy II uses a formal semantic model for system-level
types. Unlike Rosetta, Ptolemy models are executable and frequently used as
software components.

6 Discussion

This paper overviews the approach to multi-paradigm specification embodied
in the Rosetta specification system. We began with the assertion that Rosetta
facets would be denoted as coalgebras, organized around domains situated in
a lattice defined by homomorphism. Using the lattice as a basis, we discussed
how homomorphisms define a Galois connection that assures the safety of in-
formation across specification transformations. Using the lattice and coalgebra
semantics, we discussed how functors are used to move specifications between
domains and how products are used to compose specifications in a well-defined,
controlled manner.

Although space prevents discussing details of Rosetta or the Rosetta spec-
ification system, this overview should motivate further study of the lattice-of-
coalgebras approach. We assert that the approach has potential beyond the

36

Jennifer Streb and Perry Alexander Using a Lattice of Coalgebras . . .

Rosetta specification system and our initial results in digital design, power-
aware design and security suggest broad applicability.

References

[1] P. Alexander and C. Kong, “Rosetta: Semantic support for model-centered
systems-level design,” IEEE Computer, vol. 34, pp. 64–70, November 2001.

[2] P. Alexander, System Level Design with Rosetta. Morgan Kaufmann Pub-
lishers, Inc., 2006.

[3] B. Jacobs and J. Rutten, “A tutorial on (co)algebras and (co)induction.”
EATCS Bulletin 62, 1997. p.222-259.

[4] P. Cousot, “Abstract interpretation,” ACM Computing Surveys, vol. 28,
pp. 324–328, June 100.

[5] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis.
Springer-Verlag, 2005.

[6] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifications 1: Equa-
tions and Initial Semantics. EATCS Mongraphs on Theoretical Computer
Science, Berlin: Springer–Verlag, 1985.

[7] D. R. Smith, “Constructing specification morphisms,” Journal of Symbolic
Computation, vol. 15, pp. 571–606, 1993.

[8] D. R. Smith, “KIDS: A Semiautomatic Program Development System,”
IEEE Transactions on Software Engineering, vol. 16, no. 9, pp. 1024–1043,
1990.

[9] T. U. Group, UML Metamodel. Rational Software Corporation, Santa
Clara, CA, 1.1 ed., September 1997. http://www.rational.com.

[10] T. U. Group, UML Semantics. Rational Software Corporation, Santa Clara,
CA, 1.1 ed., July 1997. http://www.rational.com.

[11] A. Evans and S. Kent, “Core meta-modelling semantics of UML: The pUML
approach,” in Proceedings of UML 99, October 1999.

[12] A. Misra, G. Karsai, J. Sztipanovits, A. Ledeczi, and M. Moore, “A model-
integrated infomration system for increasing throughput in discrete man-
ufacturing,” in Proceedings of The 1997 Conference and Workshop on En-
gineering of Computer Based Systems, (Montery, CA), pp. 203–210, IEEE
Press, March 1997.

[13] A. Finkelstein, S. Easterbrook, J. Kramer, and B. Nuseibeh, “Requirements
engineering through viewpoints,” tech. rep., Imperial College, Department
of Computing, 180 Queen’s Gate, London SW7 2BZ, 1992.

37

Using a Lattice of Coalgebras . . . Jennifer Streb and Perry Alexander

[14] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,
“Viewpoints: A framework for integrating multiple perspectives in system
development,” International Journal of Software Engineering and Knowl-
edge Engineering, vol. 2, pp. 31–58, March 1992. World Scientific Publishing
Co.

[15] S. Easterbrook, “Domain modeling with hieararchies of alternative view-
points,” in Proceedings of the First International Symposium on Re-
quiremetns Engineering (RE-93), (San Diego, CA), January 1993.

[16] J. C. S. do PradoLeite, “Viewpoints on viewpoints,” in Joint proceedings
of the second international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software development
(Viewpoints ’96) on SIGSOFT ’96 workshops, pp. 285–288, 1996.

[17] S. Easterbrook and M. Sabetzadeh, “Analysis of inconsistency in graph-
based viewpoints: A category-theoretic approach,” in Proceedgings of
The Automated Software Engineering Conference (ASE’03), (Montreal,
Canada), pp. 12–21, October 2003.

[18] S. Easterbrook and M. Chechik, “A framework for multi-valued reason-
ing over inconsistent viewpoints,” in International Conference on Software
Engineering, pp. 411–420, 2001.

[19] S. Easterbrook and B. Nuseibeh, “Managing inconsistencies in evolving
specifications,” in Proceedings of the Second IEEE International Symposium
on Requirements Engineering (RE-95), (York, UK), pp. 48–55, IEEE Press,
April 1995.

[20] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems,” Int. Journal
of Computer Simulation, vol. 4, pp. 155–182, April 1994.

[21] J. Davis, “Ptolemy ii - heterogeneous concurrent modeling and design in
java,” 2000.

38

Constructing Multi-Paradigm Modeling
Methods based on Method Assembly

Motoshi Saeki
Dept. of Computer Science,

Tokyo Institute of Technology
Ookayama 2-12-1-W83-3,

Meguro, Tokyo 152-8552, Japan
saeki@se.cs.titech.ac.jp

Haruhiko Kaiya
Dept. of Computer Science,

Shinshu University
Wakasato 4-17-1,

Nagano 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp

Abstract. Computer Aided Method Engineering (CAME) is a kind of computerized
tool for supporting the processes to build project-specific modeling methods and their
supporting tools. This position paper presents the extended version of our CAME
tool and discusses how to apply it to the tool integration for multi-paradigm modeling
methods.

Keywords: Meta Modeling, Computer Aided Method Engineering, Method Assem-
bly, UML

1 Introduction

Computer Aided Method Engineering (CAME) is a kind of computerized tool for
the support of building project-specific methods for software development and
generating their supporting tools [3]. One of the easiest ways to build them is
to adopt reuse technique. In this technique, we have a kind of database system,
called method base, which stores reusable method portions, called method frag-
ments or method chunks, and assemble them into a situational method that can
fit to a development project. Method assembly can be one of the techniques to
construct situational multi-paradigm modeling methods. The supporting tools
for this newly built method can be automatically generated by using the CAME
tool. This position paper presents the extended version of our CAME tool [8]
and discusses how to apply it to the construction and the tool integration for
multi-paradigm modeling methods.

2 Requirements to CAME

Our CAME tool gets a method description (a meta model) as an input and
produces the CASE tools that support the described method. We can list up
the requirements to the technique of describing methods and to our CAME tool
for multi-paradigm methods as follows.

39

Constructing Multi-Paradigm . . . Motoshi Saeki and Haruhiko Kaiya

1. The method description technique shall have sufficient power to express
various kinds of methods. In this paper, we focus on the software require-
ments analysis and design methods whose artifacts to be produced are ex-
plicitly defined. The examples of our targets are the diagrams whose syn-
tax is defined and texts including structured natural-language sentences
where the syntax of words is clearly defined.

2. The method description technique shall be able to specify constraints on
products developed following a method. These constraints are significant
to keep consistency on the products.

3. The method description technique shall be able to define how the gener-
ated CASE tools co-operates so as to support the multi-paradigm method
effectively. In the multi-paradigm method, several supporting tools, each
of which supports a single paradigm method included in it, are tightly
combined and used. In addition, the tools that cannot be automatically
generated such as code generation and model transformation should be
combined easily.

4. The generated CASE tools shall have the function of version control. The
model being developed is frequently changed by requests of customers
and/or by the changes of the situational environment. Unlike usual version
control techniques for text documents such as CVS and Subversion, the
units of version control are not lines of the documents but the logical
concepts of the models such as Class in a class diagram and State in a
state diagram.

3 Overview of Our CAME tool

3.1 Overall Architecture of Our Tool
Our CAME tool is based on reuse technique similar to the other existing CAME
tools such as Decamerone [3] and MetaEdit+ [5]. Reuse technique is charac-
terized by using reusable method portions, called method fragments or method
chunks, which can be extracted from several existing methods. Method frag-
ments are stored in a specific database called method base, and a special engi-
neer, called method engineer obtains suitable fragments from the method base
and assemble them into a new and project-specific method. The overview of our
CAME tool is shown in Figure 1. The method engineer uses a method editor
to manipulate the method fragments from the method base and assemble them
into a new method. The method editor is a kind of diagram editor and allows
the method engineer to easily edit method fragments. The method descrip-
tion consists of a product description and a process description. Our CAME
tool automatically generates from the product description, 1) a modeling tool
(CASE tool) for supporting inputting and editing products, such as the editor
of Class Diagram, i.e. diagram editors and 2) the schema of a repository. In
the meanwhile, the process description is used to generate a Navigation Browser

40

Motoshi Saeki and Haruhiko Kaiya Constructing Multi-Paradigm . . .

Figure 1: Overview of CAME

that guides software engineers’ activities following the method. The generated
modeling tools are not only for supporting inputting and editing products, such
as the editor of Class Diagram, but also have version control mechanism.

The scenario of using the version control mechanism is illustrated as follows.
A software engineer, i.e., a user of the generated modeling tool develops the first
version of a model as a baseline, and imports it to the repository. He can check
out any versions of the model that are stored in the repository, and edit them by
using the editor. The editor gets the operation sequences on the model in real-
time by monitoring the editor commands that he used. And he can check in the
current version of the product by storing operation sequences as the difference
to the repository whenever he wants to do. The details of this version control
mechanism and the technique to generate it are discussed in [7].

3.2 Method Description Technique: Meta Modeling

In our method description technique, we adopt UML class diagram for speci-
fying product descriptions of methods and UML activity diagram for process
descriptions. In addition to these two facets, we should consider constraints on
the products and on performing the activities of the process descriptions. To
specify these constraints, we use OCL (Object Constraint Language).

The example of the method fragment is shown in a Figure 2 and it is the
simplified version of class diagrams. In the figure, two sub windows Proper-
tyEditor appear, the upper one is for specifying the properties of a product part
and the lower one is for an activity. The method engineer defines the constraint

41

Constructing Multi-Paradigm . . . Motoshi Saeki and Haruhiko Kaiya

of the uniqueness of class names (no classes having the same name in a class
diagram) with OCL through the upper ProperyEditor window.

The process part is described in hierarchical activity diagrams, and the figure
illustrates the execution flow of the top-level activity “ConstructSimpleClassDi-
agram". The association “Produce" between the activity and the package “Sim-
pleClassDiagram", a dotted arrow in the figure, represents the output product
of the activity. The method engineer can use two associations “Produce" and
“Consume" to specify output and input products respectively, and these associ-
ations are implicitly used to connect the generated CASE tools to the activity.
For example, the generated tool for SimpleClassDiagram is automatically con-
nected to the activity “ConstructSimpleClassDiagram" and when the method
engineer starts this activity, the tool is automatically invoked, because the tool
“produces" a SimpleClassDiagram. For an activity, the products specified with
“Consume" are automatically displayed to assist in performing it. And, if no
parts of the products specified with “Consume" are constructed yet, the method
engineer cannot usually start the activity. The activity may be decomposed into
lower level of activities such as “Identify Classes", “Identify Attributes" and so
on. The method engineer can use any syntactic constructs of UML activity dia-
grams such as fork, join, branch etc. to define processes of the methods. There
are several constraints to make a process description syntactically consistent
and they are on activity diagrams. For example, an activity that has neither
consumed nor produced products is inconsistent because it has no inputs or
outputs.

We can set the conditions written in OCL in order to control tool invoca-
tions and the behavior of software engineers. These conditions are evaluated at
a certain time, e.g. when the activity is entered or exits. If they are violated,
the action specified by the method engineer is invoked, and this action can be
specified as an executable Java program. In the lower window PropertyEditor
of Figure 2, the condition (Product Condition) at timing “ProcessEntered" is a
blank and it means “False". The action to be performed when the method en-
gineer comes to the activity is “BootCASETool", and the CASE tool specified
by him starts its execution. The method engineer can specify the tool name
to be invoked by using the menu “BootCASETool" in Figure 2. In the exam-
ple of the figure, the method engineer specifies the generated diagram editor
“SimpleClassDiagram". Since the activity to “produce" a SimpleClassDiagram
is only one and it is connected directly to the starting node (black circle) of
the activity diagram, the editor is invoked when a software engineer starts this
method. Although the method engineer can specify tool invocation by using
“BootCASETool", more complicated processing on the constructed models may
be necessary. Our tool provides Java API to access and manipulate the models,
and the method engineer can develop Java programs to implement the compli-
cated processing if necessary using the Java API. To get higher adaptability of
the combination between activities and tools, the Java API is useful and this
function is different from BPML [1]. The detail will be mentioned in the next
section.

42

Motoshi Saeki and Haruhiko Kaiya Constructing Multi-Paradigm . . .

In addition to implementing and embedding the generation technique of
version control mechanism, the newly extended parts of our tool from [8] is the
description on how to combine the generated tools into an integrated tool by
using UML activity diagram and OCL, as mentioned above. In [8], the process
descriptions written in UML activity diagram were used for guiding model de-
velopers by showing what activities they should perform at next, as shown in
Navigation Browser in Figure 1. On the other hand, in this extended version of
the tool, we use UML activity diagram for specifying pre and post conditions
of an activity and for defining actions to be performed within the activity. As a
result, the method engineer cannot only specify the order of invoking the gen-
erated tools, but also check consistency of the model (an instance of the meta
model) and transform the model for the later steps.

Figure 2: An Example of Method Fragments

3.3 Generating Diagram Editors
Our CAME is only for generating diagram editors from a product description,
and it conceptually captures a product as a graph consisting of nodes and edges.
To generate the editors, a method engineer should provide the information on
which the elements in a method description can be represented with nodes or
edges of the graph. He provides two types of information: one is the correspon-

43

Constructing Multi-Paradigm . . . Motoshi Saeki and Haruhiko Kaiya

dence of method elements to the elements of graphs, i.e. nodes, edges, texts
within the nodes and texts on the edges, and another is notational information
of the nodes and edges. Suppose that he tries to generate a class diagram editor
from SimpleClassDiagram. The concept Class in the SimpleClassDiagram con-
ceptually corresponds to nodes in a graph, while Association does to edges. He
provides this information as stereotypes on the method elements. The readers
can find the stereotypes “<<Entity>>" and “<<Relationship>>" attached to
the classes in Figure 2. The former stereotype stands for the correspondence to a
node and the latter to an edge. We have additional stereotype “<<Feature>>"
to express the text data which are input from a dialog box in the generated
modeling tool. In addition, he should specify which figures, say a rectangle, a
circle, an oval and a dashed arrow, are used for expressing a method element
on the editor screen. Basic graphical figures such as shapes used in UML di-
agrams are built-in and their drawing programs are embedded as Java classes
into our CAME. A method engineer selects the figures out of these pre-defined
built-in figures for the <<Entity>> components and <<Relationship>> ones,
by clicking a menu item, as shown in the window “Salab Meta CASE" of Figure
2.

4 Multi-paradigm Methods by Method Assembly

Let’s consider a simple scenario where a method engineer assembles the two
method fragments StateDiagram (simplified version of usual State Diagram)
and SimpleClassDiagram into a new method fragment Object Chart [4], which
is drawn from [3]. In Object Chart method, a final product consists of a class
diagram and state diagrams each of which corresponds to a class appearing in
the class diagram. A state diagram specifies the behavior of the instances of
the corresponding class, and its states can be annotated with attributes of the
class. A software engineer develops a class diagram and then constructs a state
diagram for each class.

Figure 3 illustrates the snapshot of this assembly task done by a method en-
gineer. He gets the fragments StateDiagram and SimpleClassDiagram from the
method base, and then customizes and combine these fragments for assembling
them. For example, in the product part, he creates the new association “has",
which combines StateDiagram and Class concept in SimpleClassDiagram, while
in the process part he connects the ending point of the activity for SimpleClass-
Diagram to the starting point of StateDiagram as shown in the activity diagram
of Figure 3. After completing combining the method fragments, the method en-
gineer newly specifies the constraints, if any, to keep consistency on an Object
Chart. In an Object Chart, events in a state diagram must appear as operations
in classes in a class diagram. This constraint can be represented with OCL and
it is set in the field “product condition" of the activity ConstructStateDiagram
with the PropertyEditor window, which is the topmost of the three window
occurrences of Property Editor. The method engineer selects ProcessExited to
specify when the condition is checked in the window. Whenever the software

44

Motoshi Saeki and Haruhiko Kaiya Constructing Multi-Paradigm . . .

engineer finishes the activity ConstructStateDiagram, the generated tool checks
if all events in the constructed state diagram also appear in the class diagram
as operations or not. After setting the condition, the method engineer makes
the “work" field “ShowMessage" so as to warn the software engineer when the
constraint is violated, as shown in the middle window of the three ProperyEd-
itors. The third window, i.e. the bottom of the ProperEditor windows shows
the result of the method engineer’s selection of the menus in the property editor
of “ConstructStateDiagram".

The connection of the two generated diagram editors, i.e. SimpleClassDia-
gram editor and StateDiagram editor can also be defined in the same way, i.e.
selecting menu items of the property editors. The method engineer can select the
timing from ProcessEntered, ProcessExited, ProducedCASEToolBooted (the
specified tool is invoked) and ButtonPressed (the specified button on the tool is
clicked), and the action from UserDefined, BootCASETool, CreateSameName-
Instances (pasting the objects having the same names from the products de-
veloped by another method), ShowMessage and ShowCandidateName. Three
occurrences of the property editor windows in Figure 3 illustrate the process to
specify the product condition, the timing and the action.

In Object Chart method, a class diagram is connected to state diagrams, and
it is possible to generate a part of the state diagrams from the class diagram. In
this example, the method engineer develops a Java program to generate a state
diagram with blank sheet for each class in the class diagram, and selects the
UserDefined menu and the timing ProcessExited at ConstructSimpleClassDia-
gram activity so as to register his developed program. Our tool provides Java
API so as to develop this kind of Java program easily as a plug-in.

Figure 4 is a snapshot of the CASE tool for Object Chart method, which
has been generated from its method description shown in Figure 3. When a
software engineer (a user of Object Chart method and this tool) goes to the
next activity by clicking a right directed block arrow in the menu of Navigator
in the top left window of Figure 4, the execution of the tool for the next activity,
if it is specified as timing ProcessEntered, is triggered. The left directed block
arrow is for going back to the last activity. The software engineer can click the
activity in the activity diagram in the right window of Figure 4 so as to start the
clicked activity. When the software engineer changes the currently performed
activity, the actions specified as timing ProcessExited or ProcessEntered are
checked and executed if possible. Note that the software engineer can take the
only actions through the specified tools at the activity. In this sense, we do not
explicitly specify the possible actions of software engineers in the activity and
this is different from GME [6] and AutoFocus [9].

The software engineer developed a class diagram at first (version 1) by using
the generated class diagram editor and modified it as a version 2. The version
tree viewer appears in the middle of the figure, and he can check out any version
of the class diagram by clicking an item of the version list displayed in the
left area. After finishing the version 2 of the class diagram, he moved to the
next activity and selected the class “Lift". He is currently constructing a state

45

Constructing Multi-Paradigm . . . Motoshi Saeki and Haruhiko Kaiya

Figure 3: Multi-paradigm Method Example

46

Motoshi Saeki and Haruhiko Kaiya Constructing Multi-Paradigm . . .

Figure 4: CASE Tool for Object Chart Method

diagram specifying the behavior of “Lift", by using a state diagram editor which
has been automatically invoked.

Although we used non-hierarchical state diagrams for simplicity in this ex-
ample, it is worthy of mentioning how to specify hierarchical diagrams with our
tool. There are two alternatives, one is to introduce an association from a state
to a package of “StateDiagram" in Figure 3, and another is an integration of
two non-hierarchical state diagram meta models in a tree structure form. In
the former alternative, the introduced association represents hierarchical links
between state diagrams, and our CAME tool generates a single editor where
all of the state diagrams are handled together. In the latter one, for each non-
hierarchical state diagram, a diagram editor is attached and the corresponding
editor is invoked following a hierarchical structure of the state diagrams, i.e.
whenever a software engineer goes to a child state diagram. This is similar to
Figure 3, where a class diagram and a state diagram is a parent and its child
respectively.

47

Constructing Multi-Paradigm . . . Motoshi Saeki and Haruhiko Kaiya

5 Research Agenda
In this paper, we showed our computerized tool CAME and how to use to con-
struct multi-paradigm modeling methods and their supporting tools. We have
experienced in specifying meta models and in generating their editors for 12 ba-
sic diagrams (including 9 UML diagrams, UML action semantics diagram, Data
Flow Diagram etc.), scenario analysis method (structured itemized text sen-
tences), and goal-oriented analysis method (AND-OR goal graph). And we had
constructed their well-known several integrations such as Class Diagram + State
Diagram, and more practical methods such as OMT, Shlaer-Mellor, Scenario-
Use Case method and etc. Shlaer-Mellor method was the most complicated in
our case studies and was composed of three modeling methods; information,
process and state models. Its meta model contains 24 classes in its product
description and 18 activities in its process part. Through these experiences, we
could realize the research issues as follows;

• More Powerful Support to Build Multi-Paradigm Methods
Meta model based assembly is just a technique from syntactic aspect.
To get meaningful multi-paradigm methods, we should explore semantical
aspect of method fragments, e.g. by using Ontology technique [2, 3].

• Version Control and Configuration Management
Although our CAME can generate the tools having version control and
consistency checking mechanisms, these mechanisms work on method frag-
ment level. In the example of Figure 4, a software engineer can construct
any versions of class diagrams and state diagrams independently and they
are managed separately. However these diagrams should be combined con-
sistently and we need the support of selecting the consistent combinations.
We adopted forward difference approach to store any versions of a model in
a repository, but this approach has more shortcomings rather than back-
ward difference one, in particular performance of checking out the newest
version. The reasons of the forward difference approach are 1) the easier
technique to handle with branched versions because the baseline version
is only one and 2) research interest to explore how easy this experimental
version of our CAME could be implemented and how less performance it
had. In fact, all of the editors that the CAME generates have Undo and
Redo functions and it is not so difficult to switch the current version with
backward difference approach.

• Support the Development of Java Programs for Tool Cooperation
The UserDefined menu in a property editor forces a method engineer to
develop Java programs for controlling tool cooperation. Typical controls
of tools frequently appearing in multi-paradigm methods can be collected
and catalogued to patterns, templates and a library in order to support
the development of these programs.

• Support for Code Generation and Model Transformation
The techniques for code generation and model transformation, e.g. their

48

Motoshi Saeki and Haruhiko Kaiya Constructing Multi-Paradigm . . .

algorithms and transformation rules etc. greatly depend on the adopted
meta models. For example, the code generation from class diagrams is
different from state diagrams. Thus our tool currently provides Java API
to access the constructed models so as to generate new models and their
fragments, and a method engineer should implement meta-model-specific
code generation and model transformation by means of the Java programs
that use the Java API. As for model transformation, our tool can transform
the models into XMI-compliant XML documents that can be inputs to the
existing Graph Transformation Tool such as AGG [10], and currently we
are developing the combination of AGG with our tool.

• Generating Various Types of CASE Tools from a Method Description
In this paper, we limited the generation to diagram editors. The other
types of CASE tools such as analyzers, e.g. calculating product quality,
verifiers and simulators should be considered. Furthermore we consider
a product as a graph conceptually and it leads to the limitation of the
variety of its notation. In the example of UML Sequence Diagram, it
can be logically represented with a graph. However it is not so suitable
that we draw directly a sequence diagram as a graph, because geometrical
information such as sizes and positions of figure objects (lines, arrows,
rectangle boxes) in a sequence diagram is important. That is to say, in a
logical level, considering a graph is sufficient, but in a notational level, a
graph, which represents connections of figure objects only, is not sufficient.
Wide variety of notation is necessary to deal with different kind of CASE
tools.

• Usability and Performance of OCL
We found several difficulties in specifying constraints with OCL because
OCL has not enough retrieval functions, in the sense that more efforts
were necessary to specify complicated constraints and conditions. And
also, the performance of OCL evaluator was an issue when the size of the
model was larger.

References
[1] BPML. http://www.ebpml.org/bpml.htm.

[2] J. Bezivin and R. Lemesle. Ontology-based layered semantics for precise
OA&D modeling. In Proceedings ECOOP’97 Workshop on Precise Seman-
tics for Object-Oriented Modeling Techniques, pages 31–37, 1997.

[3] S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-Modelling Based Assem-
bly Techniques for Situational Method Engineering. Information Systems,
24(3):209 –228, 1999.

[4] D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How to
Use Statecharts in Object-Oriented Design. IEEE Trans. on Soft. Eng.,
18(1):9 – 18, 1992.

49

Constructing Multi-Paradigm . . . Motoshi Saeki and Haruhiko Kaiya

[5] S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ : A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In Lecture
Notes in Computer Science (CAiSE’96), volume 1080, pages 1–21, 1996.

[6] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi. The Generic Modeling Envi-
ronment. In Proc. of WISP’2001, 2001.

[7] T. Oda and M. Saeki. Generative Technique of Version Control Systems
for Software Diagrams. In Proc. of the 21st IEEE Conference on Software
Maintenance (ICSM’05), pages 515–524, 2005.

[8] M. Saeki. Toward Automated Method Engineering: Supporting Method
Assembly in CAME. In Engineering Methods to Support Informa-
tion Systems Evolution (EMSISE’03 in OOIS’03). http://cui.unige.ch/db-
research/EMSISE03/, 2003.

[9] B. Schätz, P. Braun, F. Huber, and A. Wisspeintner. Consistency in
Model-Based Development. In Proc. of 10th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems (ECBS’03),
pages 287–296, 2003.

[10] G. Taentzer, O. Runge, B. Melamed, M. Rudorf, T. Schultzke,
and S. Gruner. AGG : The Attributed Graph Grammar System.
http://tfs.cs.tu-berlin.de/agg/, 2001.

50

Think Global, Act Local:
Implementing Model Management with
Domain-Specific Integration Languages

Thomas Reiter
Information Systems Group (IFS)

Johannes Kepler University Linz, Austria
reiter@ifs.uni-linz.ac.at

Werner Retschitzegger
Information Systems Group (IFS)

Johannes Kepler University Linz, Austria
werner@ifs.uni-linz.ac.at

Kerstin Altmanninger
Department of Telecooperation (TK)

Johannes Kepler University Linz, Austria
kerstin@tk.uni-linz.ac.at

Abstract. In recent years a number of model transformation languages have emerged
that deal with fine-grained, local transformation specifications, commonly known as
programming in the small [13]. To be able to develop complex transformation systems
in a scalable way, mechanisms to work directly on the global model level are desirable,
referred to as programming in the large [26]. In this paper we show how domain
specific model integration languages can be defined, and how they can be composed
in order to achieve complex model management tasks. Thereby, we base our approach
on the definition of declarative model integration languages, of which implementing
transformations are derived. We give a categorization of these transformations and
rely on an object-oriented mechanism to realize complex model management tasks.

Keywords: model integration, model transformation, model management, domain-
specific languages.

1 Introduction

Model-driven development (MDD) in general aims at raising the productivity
and quality of software development by automatically deriving code artifacts
from models. Even though an immediate model-to-code mechanism can yield
tremendous benefits, it is commonly accepted that working model-to-model
mechanisms are necessary [23] to achieve integration among multiple models
describing a system and to make models first-class-citizens in MDD.

51

Think Global, Act Local . . . Thomas Reiter et al.

In recent years, therefore, a number of model transformation languages (MTLs)
have emerged, which allow to specify transformations between metamodels.
Such transformations are defined on a fine-grained, local level, upon elements of
these metamodels. Albeit the advantages that MTLs bring in terms of manip-
ulating models, it is quite clear that defining model transformations on a local
level, only, can pose substantial scalability problems. Similarly, [9] emphasizes
the need for establishing relationships between macroscopic entities like models
and metamodels, for instance for the coordination of various domain-specific
languages.

There are already first approaches trying to alleviate the above mentioned
problem from two different angles (cf. also Section 5). The first category adheres
to a bottom-up approach, meaning that existing general purpose MTLs are
extended for special tasks like model merging [14] or model comparison [21].
Furthermore, mappings carrying special semantics can be established between
metamodels and further on be derived into executable model transformations
[6].

The second category of approaches is top-down-oriented and falls into the
area of model management, where relationships between models are expressed
on a coarse-grained, global level through generic model management operators.
The aim of model management is to ease the development of metadata intensive
applications, by factoring out common tasks in various application scenarios and
by providing generic model management operators for these tasks. The oper-
ators’ generality allows to make assumptions about, e.g., algebraic properties
of model management operations, but does not necessarily make any specific
assumptions about the operators’ actual implementations. For instance, Rondo
[5] is an implementation of such a system, oriented towards managing relational
and XML schemata.

It is our opinion that both, bottom-up and top-down approaches are valu-
able contributions and should be considered as potentially complementing each
other, as opposed to be thought of as two sides of a coin. One of model manage-
ment’s main contributions is to provide a conceptually well-founded framework
guiding the actual implementation of model management operators, for which
the capabilities of increasingly more powerful MTLs can be leveraged.

Therefore, this paper represents early work in drafting an approach that
tries to build on the strengths of both paradigms. On the one hand, the model
management rationale to make models first-class-citizens and to achieve com-
plex model management tasks by assembling global operations on models, is
followed. On the other hand, our approach relies on domain-specific languages
(DSLs) developed atop general-purpose MTLs for locally handling fine-grained
relationships between metamodels. The proposed approach resides in the con-
text of the ModelCVS [18][17] tool integration project, which aims at integrating
various modeling tools via metamodels representing their modeling language.
Concretely, the problems that need to be solved are finding efficient ways to
integrate various metamodels on a local level, and solve common problems, e.g.,
metamodel evolution, on a global level.

52

Thomas Reiter et al. Think Global, Act Local . . .

The remainder of this paper is structured as follows. Section 2 discusses
the rationale behind our approach. Section 3 deals with the composition of
model management operators and classifies different kinds of transformations.
Section 4 goes into detail about how domain specific integration languages can
be defined. Section 5 discusses related work and Section 6 summarizes our
approach.

2 Rationale for our Approach

To better motivate the rationale underlying our approach, this section starts
with an analogy referring to the definition of primitive recursive functions. Ta-
ble 1 shows the various abstraction layers our approach is built on and introduces
terms and concepts used throughout this paper. Referring to computability the-
ory, using only the constant, successor, and projection functions, all primitive
recursive functions, such as addition or subtraction operators, can be defined.
Analogous to that, on top of existing model transformation languages residing
on the local level, we define integration operators on the local composite level for
handling fine-grained relationships between model elements. Algebraic as well
as integration operators are then bundled up into sets representing algebras or
integration languages, respectively. We refer to this level as intermediate, be-
cause the elements of algebras and integration languages act upon the local level,
but are used to define transformations acting upon the global level. Hence, on
the global level, complex functions and concrete realizations of model manage-
ment operators are found. These algebras and languages are at a suitable level
of abstraction and are commonly used to assemble algebraic terms or model
management scripts [4]. After establishing a view across the abstraction layers,
ranging from bottom-level MTLs to top-level model management scripts, we
illustrate our approach in a top-down fashion in more detail.

Level Natural Example Proposed Example
Numbers Approach

Global Composite Terms power2(max(x,y)) Model Mgmt. m”=translate(m.merge(m’))
Scripts

Global Complex Functions power2(z),max(x,y) Model Mgmt. Translation,PackageMerge
Operators

Intermediate Algebras {+,-,N},{*,/,N} Integration FullEquivLang,MergeLang
Languages

Local Composite Operators +,-,* Integration FullEquivClass,MergeClass
Operators

Local Base Functions succ(x),null() MTL Expressions ATLRule,OCLExpression

Table 1: Analogy referring to the definition of primitive recursive functions.

Global and Global Composite. As depicted in Figure 1, we believe it is
helpful to view the composition of complex model management operations as
an object-oriented (OO) meta-programming task [2], where models are under-
stood as objects and transformations as methods acting upon these “objects”.
Consequently, we think that an integral part of defining a metamodel should
be to specify integration behavior in the form of transformations (1) that are

53

Think Global, Act Local . . . Thomas Reiter et al.

MM1

MM4
MM3

MM5

MM2

MM7

MM6

MM1

MM2

MM3

MM1

MM2

MM3

MM +
Integration Behavior

MM1.append(MM2) {
… Code …

}

MM2.replace(MM3) {
… Code …

}

1

2 3

4

MM

MM

MM
Z
O
O
M

Z
O
O
M

Z
O
O
M

M
M

M
M

M
M

MM33

MM1.append(MM2) {
… Code …

}

MM2.replace(MM3) {
… Code …

}

MM

MMMM

MM3

MM2

MM1

MM1

MM6

MM4

MM5
MM2

MM7

MM3

MM3

1

2 3

4

Global Composite Global Intermediate Local Composite Local

1

2

MM2

MM1

MM1

MM3

M1

M3

Integration
Behavior

MM

MMMM

MMMM

MMMMMMMM

MM2

MM

MMMM

MMMM

MMMMMMMM

MM

MMMM

MMMM

MMMMMMMM

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (

label <- src.name,
pre <- src.incoming.source

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (

label <- src.name,
pre <- src.incoming.source

)
}

1

2 3

4

11

22 33

44

Fusion
Rewrite

Translation

M2

St
ru

ctu
re

Int
eg

ra
tio

n B
eh

av
ior DSIL

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}1

2

3

4

5

6

7

Figure 1: Illustration of our approach’s abstraction layers.

tied to that metamodel (e.g., merging state-machines). The composition of
transformations can then be facilitated by writing model management scripts
in an OO-style notation, which invokes transformations on models (2) just like
methods on objects. Transformations representing actual realizations of model
management operators are defined by languages (3) which we refer to as domain
specific integration languages (DSIL).

Intermediate. A DSIL consists of operators that enable to locally handle
fine-grained relationships between metamodels and is formalized as a weaving
metamodel [7]. The domain specificity of a DSIL stems from the fact that a
DSIL can only be applied to certain kinds of metamodels (4). For instance, a
MergeLang may be used to specify a merge for metamodels representing struc-
tures (e.g., class diagrams). As behavioral integration poses a very different
challenge than structural integration [25], a merge on a metamodel representing
some kind of behavior (e.g., business process), would have to be specified in
a FlowMergeLang, whose operators are specifically aimed towards metamodels
representing flows [24]. Efforts to formalize a metamodel’s domain (e.g., by
mapping metamodels onto ontologies [19]), could help to check whether a meta-
model falls into the domain of a certain DSIL. From our point of view, this still
poses an open research question and the applicability of a DSIL on a metamodel
ultimately requires a user’s judgement.

Local and Local Composite. An integration specification in a DSIL is a
weaving model that conforms to its weaving metamodel, which is a certain DSIL’s
metamodel (5). A weaving consists of a set of typed links between elements of a
model or a metamodel. The types of links represent different kinds of integration
operators (6), whose execution semantics are defined through a mapping towards
an executable MTL. Thus, an integration specification is finally derived into an
executable model transformation (7).

Notably, our approach focuses on specifying integration between metamodels
in a purely declarative way, as such a specification (which abstracts imperative
implementations) is the basis for reasoning tasks like analysis or optimization.

54

Thomas Reiter et al. Think Global, Act Local . . .

3 Managing Models on a Global Level

This section discusses the two top-most layers of abstraction which have been
previously introduced as global and global composite. The following subsection
exemplifies transformation composition on the global composite layer through
a model management script. Based on observations gained in the example, the
global level is elaborated on in more detail by laying out a useful classification
of transformations.

3.1 Model Manangement Scripts on the Global Compos-
ite Level

The following example deals with the merging of two domains represented by
two metamodels, as depicted in Fig. 2. When these metamodels are merged,
however, also their conforming models should be merged. We refer to such a
model management task as an exogenous merge. A concrete application would
be to merge previously modularized metamodels (e.g., a BPEL metamodel split
into a structural and a behavioral part) or to extend a metamodel with a cer-
tain aspect (e.g., add “Marks” to a Petri-net metamodel) [20]. Throughout the
example, however, for simplicity reasons and to emphasize the global perspec-
tive at this abstraction layer we will not go into detail about the makeup of
the metamodels, which are simply referred to as A and B and their conforming
models as a and as b, respectively.

There may be multiple ways to describe an exogenous merge. A straightfor-
ward way would be to program the whole task as one monolithic transformation
in a general purpose transformation language. As already argued before, such
ad-hoc approaches suffer poor scalability and reuse potential. Instead, a de-
scription of such complex tasks as a composition of global model management
operations favors scalability and reuse: Firstly, one is not concerned with han-
dling fine-grained relationships on the local model element level, and secondly,
model management operations can be easily reused in order to assemble scripts
for different tasks. Thinking of model management scripts as OO programs, as
we propose to do, furthermore has the advantage that the code for this model
management script does not need to be changed in order to work with other
metamodels, as the actual transformations that are invoked, are dynamically
bound depending on a model’s metamodel.

Fig. 2 depicts the described setting and gives a listing of the according
exogenous merge model management script. Details of the various steps in that
script are discussed in the following.

55

Think Global, Act Local . . . Thomas Reiter et al.

A.mark();
B.mark();

Ecore AB = A.merge(B);

FullEquiv wa = AB.Fe_match(A);
FullEquiv wb = AB.Fe_match(B);

Transformation ta = wa.generate();
Transformation tb = wb.generate();

AB a′ = a.ta();
AB b′ = b.tb();

AB ab′ = a′.merge(b′);

1

2
3

4

5

6

A.mark();
B.mark();

Ecore AB = A.merge(B);

FullEquiv wa = AB.Fe_match(A);
FullEquiv wb = AB.Fe_match(B);

Transformation ta = wa.generate();
Transformation tb = wb.generate();

AB a′ = a.ta();
AB b′ = b.tb();

AB ab′ = a′.merge(b′);

11

22
33

44

55

66

mark
Ecore

A B

AB*

a b′ b

ab′

A* B*

a′

22
11 11merge

66
merge

FullEquiv

mark

33

44

5555

44

33
FullEquiv

“Exogenous Merge” Script

Figure 2: Model management script for exogenous merge.

In the first step (1) a mark transformation is run that tags all metamodel ele-
ments with a unique id by adding annotations. In the second step (2) a merge
transformation is executed that unites the metamodels A and B as specified in
the merge integration specification, for instance through overlapping the two
metamodels on certain join points. This results in a new metamodel AB, which
also contains the initially introduced markings. In the third step (3) a transfor-
mation creates a weaving between each of the original A and B metamodels and
the newly created AB metamodel. A transformation creating such a weaving
does a relatively easy job, as it can rely on the previously introduced traceabil-
ity annotations to match model elements. The weavings created in our example
comprise a certain integration specification, which in step (4) is derived into
executable transformations, which are executed in (5) and migrate the models a
and b towards models a’ and b’ that conform to the AB metamodel. Since these
models now conform to the same metamodel, they can be overlapped in a merge
transformation (6). We would like to mention, that also other ways of realizing
traceability mechanisms exist, for instance through weaving a traceability as-
pect into a base transformation in an aspect-oriented fashion [16]. Embedding
traceability information into a model through annotations, in our opinion has
the advantage that a transformation producing a weaving can relatively easy
create a trace weaving model. For further processing, the annotations could be
easily pruned from the model.

3.2 Categorizing Transformations on the Global Level

After having discussed the composition of global model management operations,
the following section will establish a better understanding of the transformations
that were used in the previous example. However, this will not be done by
discussing the behavior of these transformations in terms of how model elements
are manipulated, as this is transparent on the global level and would differ for

56

Thomas Reiter et al. Think Global, Act Local . . .

different kinds of metamodels. Rather, the global level requires to put thought
on what kinds of transformations are being employed.

Hence, we classify our approach’s DSILs used to define actual transforma-
tions, into certain categories. These categories reflect recurring kinds of trans-
formations prevalent in model engineering. Such a categorization favors the
definition of modular and comprehensible transformations and creates a mind-
set where one can think of solving complex model management tasks through
composition of such modular transformations, as exemplified in the previous
subsection. Another advantage of this approach is that for every category a
generic toolset can be built that allows to manipulate languages falling into a
certain category. Transformations producing weavings can all share a tool like
the Atlas Model Weaver [7], whereas translating transformations, for instance,
can benefit from tooling to capture execution traces.

A similar distinction is made in the area of generic model management [4].
However, we allow the distinction between different categories according to the
kind of input (IMM) and output metamodels (OMM) (cf. Table 2) that the
transformations act upon, as opposed to focus on making assumptions about
the behavior or algebraic properties of transformations.

Table 2 gives an overview by showing a category’s input/output character-
istics, example transformations, a reference to similar operators proposed in
literature, and a function signature being representative for a category’s trans-
formations. To put each of the example transformations in a concrete context,
we refer to the previously used traceability mechanism in more detail now. First,
the containsAnnotations transformation is called to check whether a model is
free of traceability annotations. If so, with addTraceAnnotations traceability
annotations are added to all model elements. Next, translateWithAnnotations
or mergeWithAnnotations is called that produces an output model in which
the traceability annotations are migrated from source to target model elements.
Then, matchByAnnotations is invoked which establishes a weaving model repre-
senting traceability links according to the annotations contained in source and
target model. In a final step, this traceability weaving is input to the createRe-
verseTranslation transformation which produces a round-tripping translation
transformation.

Category Arity Output Function Example Operators
Signature in Lit.

Check 1 Prim. Type P p=check(M m); containsAnnotations Check-property
[12]

Rewrite 1 OMM==IMM M m’=rewrite(M m); addTraceAnnotations Refactorings
[17]

Translation 1 OMM!=IMM Mb mb=translate(Ma ma); translateWithAnnotations ModelGen
[3]

Fusion 2 OMM==IMM M m=fuse(M ma, M mb); mergeWithAnnotations Merge
[12]

Relation 2 Weaving W w=relate(Ma ma, Mb mb); matchByAnnotations Match
[3]

Generation 1 Transform. T t=generate(W w); createReverseTranslation GlueCodeGen
[11]

Table 2: Categories of transformations on the global level.

Check. The first category deals with transformations that map models onto
primitive value ranges, like booleans or natural numbers. This kind of func-

57

Think Global, Act Local . . . Thomas Reiter et al.

tions allow to determine whether certain properties hold for models (consistency
checks), or to evaluate certain criteria (e.g., number of inheritance relationships)
of models.

Rewrite. This category encompasses transformations that modify a model but
do not transform it into a model of another metamodel. This kind of transfor-
mations can be associated with editing or specialized refactoring operations [17],
that do not require input from another model. An example language discussed
later on is a language that allows to mark elements in a model with certain
annotations.

Translation. A translating function maps concepts of one metamodel onto
concepts of another metamodel and henceforth transforms a model conforming
to one metamodel into a model conforming to another metamodel. A special case
of a translating transformation would be if the source and target metamodels
are the same, but nevertheless concepts are translated into other concepts. This
would especially be the case when using UML, which, by means of stereotypes
or tagged values offers a somewhat weaker mechanism than DSLs to represent
concepts. Still we consider such transformations as part of this class, as the
same translation language constructs can be of use, even though binding these
needs some special effort.

Fusion. We classify a transformation as a fusion, if it takes two models as
input and produces an output model taking into account each of the inputs.
The input and output models thereby conform to the same metamodel. For
instance, this class includes transformations that are usually associated with a
merge or a diff [12], although domain specific realizations may potentially blend
these two behaviors, by overlapping and clipping certain parts of the source
models.

Relation. Transformations of this kind produce special kinds of models, which
relate two other models. These models are referred to as weaving models [7] and
consist of typed links between elements of left-hand side (LHS) and right-hand
side (RHS) models. An example for a transformation creating a weaving could
be carried out through a matcher, which heuristically establishes weaving links.
Therefore, the creation of a weaving is often a task involving manual effort.

Generation. This kind of transformations generates other transformations.
More precisely, they function as a compiler which turns weaving models into
executable transformations. Typically this is either accomplished through a
transformation whose target metamodel is the abstract syntax of a model trans-
formation language or through a templating mechanism. It is important to note,
that our view of a weaving is that a weaving model implicitly references its LHS
and its RHS model, hence we omit these models in the above signature. Thus,
we can still assume that the generation function has access to read the LHS and
RHS models.

58

Thomas Reiter et al. Think Global, Act Local . . .

4 Integrating Models on the Local Level
The previous section has detailed the global composite and the global level.
Hence, this subsection focuses on the remaining abstraction layers. As inte-
gration languages reside on the intermediate layer and this section makes use
of a concrete example DSIL, the first subsection is dedicated to the interme-
diate level and to introducing the example language. The second subsection
discusses the local composite level and discusses integration operators for the
example DSIL. The local level is dealt with in the third subsection and focuses
on the definition and extension of execution semantics for integration operators
through a mapping towards MTL code.

4.1 An Example DSIL on the Intermediate Level
The abstract syntax of a DSIL is defined in a weaving metamodel [7], which is
basically made up of meta-classes for the languages’ integration operators. Fur-
thermore, constraints are specified that enable to check whether a certain inte-
gration specification is valid. Such an analysis is comparable to static compile-
time checking in traditional programming languages. In the following we will
give an example for a basic language for the translation category. Due to space
limitations we will not go into detail about languages of other categories, just
as we are not claiming that the described integration operators are complete,
as a precise definition is out of scope of this paper.

The setting for our example is depicted in Fig. 3, which shows a simple
metamodel for activity diagrams (AD) as the LHS metamodel, and a Gantt-
chart project plan (PP) metamodel as the RHS metamodel. An activity diagram
consists of vertices and transitions in-between. A project consists of a number
of tasks and every task has a reference to its previous task.

subVertices transitions

tasks

preFullEquivAttr

FullEquivAttr

FullEquivRef

FullEquivClass
FullEquivClass

TransitionVertex
name

ActivityDiagram

description

outgoingtarget
incomingsource

Project
title

Task
label

FullEquivRefordered

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (
label <- src.name,
pre <- src.incoming.source

)
}

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (
label <- src.name,
pre <- src.incoming.source

)
}

Figure 3: Example integration specification in the FullEquiv language.

The intention is to transform ADs into PPs in a semantics preserving way.
Instead of programming the transformation directly, a DSIL is used to specify
a mapping that denotes the translation of concepts of the AD metamodel onto

59

Think Global, Act Local . . . Thomas Reiter et al.

concepts of the PP metamodel. The code snippet on the right side of Fig. 3
shows the final transformation code that should be generated in an ATL-like1

notation.

4.2 Integration Operators on the Local Composite Level

The DSIL used is the so called FullEquivalence language, which can be seen
as a basic language for the translation category. It consists of three operators,
namely FullEquivClass, FullEquivAttr, and FullEquivRef, which in a pair-wise
manner link classes, attributes, and references, respectively. During the defini-
tion of a DSIL, it is important to define how its operators relate to each other.
In our example, for instance, the FullEquivAttr and the FullEquivRef operators
have to stand in the context of the FullEquivClass operator, as the assignment
of values and the setting of references needs to happen in the context of the
model elements which these attributes and references belong to. Such a rela-
tionship is defined through containment in the metamodel of the FullEquivalence
language by making the FullEquivAttr and theFullEquivRef operators children
of the FullEquivClass parent. Relationships not inferable from structure (e.g.,
precedence rules) can be specified in a constraint language. An example for a
constraint that should be enforced is that an attribute in a target model element
cannot be referenced by more than one FullEquivAttr operator having the same
FullEquivClass parent, as this would lead to ambiguity concerning which source
attribute should be used to set the target attribute.

4.3 Mapping Integration Operators onto the Local Level

After describing the operators, in the following example it is shown how a gener-
ating function can derive an implementation in the form of MTL code. Further-
more, we will exemplify the extension of an existing operator’s semantics. The
execution semantics are expressed through a function, mapping integration spec-
ifications expressed as weaving models onto executable transformations. This is
either achieved through a template producing MTL code, or through a trans-
formation creating a transformation program encoded as a model (higher-order
transformation). However, writing transformations that produce transforma-
tion programs can be a daunting task. Thus, for better understandability, our
explanation uses an example template language, which allows to see the output
in bits of concrete syntax more intuitively.

Depending on what kind of transformation engine is used, the semantics
of the resulting transformations are for instance formalized as abstract state
machines [15] or as graph-based formalisms, such as triple-graph-grammars [22].

Continuing the above example, the subsequent paragraphs concentrate on
the execution semantics for each of the operators given in Fig. 3, by using ATL-
like code templates. At compile-time, each operator is derived into a fragment
of ATL-code, only. A weaving in a certain language, though, stands for a

1For simplicity reasons code snippets use simplified ATL syntax.

60

Thomas Reiter et al. Think Global, Act Local . . .

complete ATL transformation. The generator, therefore, needs to integrate all
these fragments into a complete ATL transformation as shown in Fig. 3.

Fig. 4 depicts pseudo-template code to show how semantics of operators can
be specified. The template code consists of target code (ATL) in plain text, and
template code in angle brackets which is bound at compile-time against LHS
and RHS model elements. Square brackets contain control-flow instructions for
the generator. In the template body of the parenting FullEquivClass operator
for instance, templates of children operators are invoked.

template FullEquivClass {
rule <smodel>2<tmodel> {
from
<sname>:<smodel>!<sclass>
[extensionpoint: precondition,

requiredType: BooleanExpression]
to
<tname>:<tmodel>!<tclass> (
[applyTemplates(this.children)]

)
}

template FullEquivClass {
rule <smodel>2<tmodel> {
from
<sname>:<smodel>!<sclass>
[extensionpoint: precondition,

requiredType: BooleanExpression]
to
<tname>:<tmodel>!<tclass> (
[applyTemplates(this.children)]

)
}

template FullEquivAttr {
<tattr> <- <sname>.<sattr>
}

template FullEquivAttr {
<tattr> <- <sname>.<sattr>
}

template FullEquivRef {
<tref> <- <sname>.<sref>
}

template FullEquivRef {
<tref> <- <sname>.<sref>
}

template CondEquivClass extends FullEquivClass{
[extension FullEquivClass::precondition] {
([applyTemplates(this.condition)])

}
}

template CondEquivClass extends FullEquivClass{
[extension FullEquivClass::precondition] {
([applyTemplates(this.condition)])

}
}

Figure 4: Template code for integration operators.

To enable the extension of existing operators, a plugin-mechanism can be used.
Thereby, templates can offer extension-points, into which templates of more spe-
cialized operators can plug-in their contributions. In Fig. 4, the FullEquivClass
template declares an extension point that requires the contribution of a boolean
expression. An example for an extension is given by the template of the Con-
dEquivClass operator, which itself invokes a template that returns a boolean
expression bound to the operator’s context. Through this inheritance-based
reuse, a CondEquivClass operator can inherit all of FullEquivClass’ behavior
and additionally denote that a model element should be transformed if a cer-
tain condition holds, only.

5 Related Work

In this paper we have laid out an approach stretching across various abstraction
layers, from global model management to local MTLs. As shown in Table 3,
existing work typically focuses on certain abstraction levels, but, in our opinion,
have not established a common understanding of how bottom-up approaches can
be utilized for the implementation of top-down approaches in a scalable way.
Furthermore, we compare related works on basis of certain key characteristics
of our approach, like the employment of DSILs, OO-style model management
scripts, the extensibility of operators and the explicit use of declarative integra-
tion specifications.

61

Think Global, Act Local . . . Thomas Reiter et al.

Related Key Characteristics Abstraction Levels
Work DSIL OO Extensible Declarative Glob. Glob. Intermed. Loc. Loc.

Comp. Comp.

MMgmt. - - - + + + - - -
MOMENT - - ∼ + - + - - +
GGT + - - + - + + + ∼
AMW + - + + - - + ∼ -
EOL + - + ∼ - - + + +
ATL - - - ∼ - - - - +

Table 3: Comparison of related work.

Model management as proposed by Bernstein et al. aims at applying operators
on the model level [3] [12]. In [4] a language-independent semantics is established
to guide the implementation of model management operators. Although our
work embraces the ideas of model management operators, e.g., by categorizing
transformations, we also extend the notion of model management scripts with
OO-mechanisms and explicitly focus on providing for scalable implementations
through DSILs.
MOMENT [10] realizes model management operators by defining their seman-
tics in QVT relations [23] that are mapped onto the algebraic specification
language Maude, which, through term rewriting, executes the defined trans-
formations. Although we focus on supporting the implementation of model
management operators, the justified intention behind MOMENT to study for-
mal properties of transformations could complement our approach in the future.
However, our approach could potentially do this on the more abstract level of
basically language independent integration operators and DSILs, as opposed
to MOMENT, where Maude doubles as an execution environment as well as a
testbed for proving formal properties.

The Glue Generator Tool (GGT) [8] aims at the reuse of existing MDA appli-
cations by specifying composition relationships between platform-independent
models (PIMs), of which glue code for the integration of platform-specific models
(PSMs) can be derived. Although rules similar to our integration operators are
offered, our approach seems to be more flexible as we allow to extend the seman-
tics of integration operators. Furthermore, the integration scenario described in
GGT could be realized as a model management script carrying out the necessary
transformations, which could allow for better modularity and maintainability of
the overall approach.

The Atlas Model Weaver (AMW) [7] is a generic, extensible tool that aims at
supporting modelers to establish semantic links between elements of arbitrary
models or metamodels. The links are referred to as weavings and are formalized
in a weaving metamodel, which can be extended to denote link types with special
semantics. This extension mechanism is the basis for defining the syntax of
integration operators and DSILs in our approach. Created weavings can then
be subject to further processing like derivation of MTL code.

The Epsilon Object Language (EOL) is a language for managing models of
arbitrary metamodels [21]. It can either be used as a standalone language for
model navigation and comparison, or also as an infrastructure on which task-
specific languages such as the Epsilon Merging Language (EML) or the Epsilon
Comparison Language (ECL) can be built. Similarly, the Atlas Transformation

62

Thomas Reiter et al. Think Global, Act Local . . .

Language (ATL) [1] is a hybrid (imperative/declarative) MTL based on the
Eclipse Modeling Framework. In our opinion, both efforts present themselves
as possible execution environments for our approach. Especially the definition
of execution semantics for DSILs falling into categories like Check or Fusion
could be conveniently accomplished relying on the expressiveness of languages
like ECL or EML.

6 Conclusion and Future Work

In this paper we have proposed a conceptual approach which allows to define
declarative model integration languages to implement model management op-
erators, and to compose these into model management scripts. The distinction
between local and global transformations fosters reuse of existing integration
operators, and allows for sound composition of transformation functions. We
have given a description of transformation categories and exemplified the com-
position of transformations into model management scripts. According to the
understanding of transformations defining the integration behavior of metamod-
els, these scripts rely on an OO mechanism to invoke transformations which are
dynamically bound depending on a metamodel’s type. Furthermore, we dis-
cussed the syntax and the semantics of an example integration language and
described a way to extend integration operators.

We think of the approach described in this paper as a step towards the re-
alization of future transformation systems which operate on the global model
level, as opposed to the local model-element level, only. To raise the level of
abstraction, domain specific languages in the form of declarative integration
specifications play a key part in our approach. These are built on existing
general-purpose transformation languages and are basically technology neutral.
We have experimented with the implementation of various weaving languages
which consist of operators that form the language kernels for the proposed trans-
formation categories. Current work deals with building a technical framework
based on existing model engineering infrastructure supporting our approach and
a generically reusable toolset for various transformation categories.

In the context of ModelCVS, besides the integration of modeling tools, a
crucial issue is the support for language evolution through metamodel modifi-
cation. Future work will investigate to what extent such metamodel extensions
can have characteristics analogous to traditional OO sub-classing, which would
allow transformations to be inherited towards extended versions of metamodels.

Acknowledgement

We thank Elisabeth Kapsammer, Wieland Schwinger and Manuel Wimmer for
their comments.This work has been partly funded by the Austrian Federal Min-
istry of Transport, Innovation and Technology (BMVIT) and FFG under grant
FIT-IT-810806.

63

Think Global, Act Local . . . Thomas Reiter et al.

References

[1] ATL Homepage, http://www.eclipse.org/gmt/atl/, 2006.

[2] Batory, D., Multilevel models in model-driven engineering, product lines,
and metaprogramming. IBM Systems Journal, VOL 45, NO 3, 2006.

[3] Bernstein, P.A., Applying Model Management to Classical Meta Data Prob-
lems. In Proceedings of the Conference on Innovative Data Systems Re-
search (CIDR), Asilomar, California, January 2003.

[4] Bernstein, P.A., A.Y. Halevy, S. Melnik, and E. Rahm, A Semantics for
Model Management Operators. Microsoft Technical Report, June 2004.

[5] Bernstein, P.A., S. Melnik, and E. Rahm, Rondo: A Programming Platform
for Generic Model Management. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Diego, California,
USA, June 2003.

[6] Bézivin et al., Combining Preoccupations with Models. 1st Workshop on
Models and Aspects - Handling Crosscutting Concerns in MDSD at the
19th ECOOP, July 2005.

[7] Bézivin, J., E. Breton, M. Didonet Del Fabro, G. Gueltas, and F. Jouault,
AMW: A Generic Model Weaver. In Proceedings of the 1ère Journée sur
l’Ingénierie Dirigée par les Modèles, Paris, France, 2005.

[8] Bézivin, J., F. Jouault, D. Kolovos, I. Kurtev, and R.F. Paige, A Canon-
ical Scheme for Model Composition. A. Rensink and J. Warmer (Eds.):
ECMDA-FA 2006, LNCS 4066, pp. 346–360, 2006.

[9] Bézivin, J., F. Jouault, P. Rosenthal, and P. Valduriez, Modeling in the
Large and Modeling in the Small. LNCS, No. 3599, edited by Uwe Aßmann,
Mehmet Aksit, Arend Rensink. Springer-Verlag GmbH, pp. 33–46, 2005.

[10] Boronat, A., J.Á. Carsí, and I. Ramos, Algebraic Specification of a Model
Transformation Engine. European Joint Conferences on Theory and Prac-
tice of Softwaere (ETAPS06), Vienna, March 2006.

[11] Bouzitouna, S., M.P. Gervais, and X. Blanc, Models Reuse in MDA. In Pro-
ceedings of the International Conference on Software Engineering Research
and Practice (SERP05), Las Vegas, USA, June 2005.

[12] Brunet et al., A Manifesto for Model Merging. In Proceedings of the
1st International Workshop on Global Integrated Model Management
(GaMMa2006), Shanghai, May 2006.

[13] DeRemer, F., and H. Kron, Programming-in-the-Large Versus
Programming-in-the-Small. IEEE Trans. on Soft. Eng. 2(2), 1976.

64

Thomas Reiter et al. Think Global, Act Local . . .

[14] Engel, K.-D., D.S. Kolovos, and R.F. Paige, Using a Model Merging Lan-
guage for Reconciling Model Versions. A. Rensink and J. Warmer (Eds.):
ECMDA-FA 2006, LNCS 4066, pp. 143–157, 2006.

[15] Gurevich, Y., P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State
Machines: Theory and Applications. LNCS VOL 1912, Springer-Verlag,
2000.

[16] Jouault, F., Loosely Coupled Traceability for ATL. In Proceedings of the
European Conference on Model Driven Architecture (ECMDA) workshop
on traceability, Nuremberg, Germany, 2005.

[17] Kappel et al., Lifting Metamodels to Ontologies: A Step to the Semantic
Integration of Modeling Languages. In Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems (MoD-
ELS/UML), Genova, Italy, October 2006.

[18] Kappel et al., On Models and Ontologies - A Semantic Infrastructure
Supporting Model Integration. In Proceedings of Modellierung, Innsbruck,
Tirol, Austria, March 2006.

[19] Kappel et al., Towards A Semantic Infrastructure Supporting Model-based
Tool Integration. In Proc. of the 1st Int. Workshop on Global integrated
Model Management (GaMMa2006), Shanghai, May 2006.

[20] Kapsammer, E., T. Reiter, W. Retschitzegger, and W. Schwinger, Model
Integration Through Mega Operations. In Proc. of the Int. Workshop on
Model-driven Web Engineering (MDWE), Sydney, July 2005.

[21] Kolovos, D.S., R.F. Paige, and F.A.C. Polack, The Epsilon Object Language
(EOL). A. Rensink and J. Warmer (Eds.): ECMDA-FA 2006, LNCS 4066,
pp. 128–142, 2006.

[22] Königs, A., and A. Schürr Specification of Graph Translators with Triple
Graph Grammars. In Proc. of Graph-Theoretic Concepts in Computer Sci-
ence, 20th Int. Workshop, Herrsching, Germany, 1994.

[23] Object Management Group (OMG), MOF QVT Final Adopted Specifica-
tion. November 2005.

[24] Reiter, T., W. Retschitzegger, W. Schwinger, and M. Stumptner, A Gener-
ator Framework for Domain-Specific Model Transformation Languages. In
Proceedings of the 8th International Conference on Enterprise Information
Systems (ICEIS), Paphos, Cyprus, May 2006.

[25] Stumptner, M., M. Schrefl, and G. Grossmann, On the Road to Behavior-
Based Integration. In Proceedings of Conceptual Modelling, First Asia-
Pacific Conference on Conceptual Modelling (APCCM2004), Dunedin, New
Zealand, January 2004.

65

Think Global, Act Local . . . Thomas Reiter et al.

[26] Wiederhold, G., P. Wegner, and S. Ceri, Toward megaprogramming.
CACM, Volume 35, Issue 11, pp. 89–99, November 1992.

66

Block Diagrams as a Syntactic Extension
to Haskell

Ben Denckla
Denckla Consulting, 1607 S. Holt Ave.,

Los Angeles, CA 90035, USA
bdenckla@alum.mit.edu

Pieter J. Mosterman
The MathWorks, Inc., 3 Apple Hill Dr.,

Natick, MA 01760, USA
pieter.mosterman@mathworks.com

Abstract. Often, the semantics of languages are defined by the products that support
their usage. The semantics are then determined by the source code of those products,
which often is a general-purpose programming language. This may lead to complica-
tions in defining a clean semantics, for example because imperative notions slip into
a declarative language. It is illustrated how block diagrams can be translated into
Haskell to define the semantics of a graphical language in terms of a textual program-
ming language. This also allows the use of block diagrams as a syntactic extension to
Haskell and the use of Haskell as an action language in block diagrams. Imperative
notions can then be included from the declarative perspective of Haskell, which is
more constrained and less prone to resulting in complicated semantics of interaction
and combination of the imperative and declarative.

1 Introduction
The increasing application of computational power in engineered systems such
as automobiles, consumer electronics, and aircraft has resulted in a stagger-
ing complexity that has proven difficult to negotiate with conventional design
approaches. For example, high-end automobiles may now employ up to 80
microprocessors that largely interact with each other through the automobile
networks such as the controller area network, CAN [1]. The discrete nature of
the software that is running on these microprocessors abandons the notions of
continuity that are inherent in the more traditional physics design problems [20]
and this has put forward the need for different design approaches.

To successfully tackle the computational complexity of modern engineered
systems, Model-Based Design [3] is increasingly being adopted, which addresses
the software complexity at a computational model level. This allows circumvent-
ing the practice of designing functionality directly at the level of computation,
such as in assembly or programming languages. The power of those languages
often leads to complexity in a design that is difficult to comprehend, and, there-
fore, results in errors. To curtail this problem, typically programming styles are

67

Block Diagrams as a Syntactic . . . Ben Denckla and Pieter J. Mosterman

mandated and code structure of too high complexity (e.g., cyclomatic complex-
ity) is disallowed.

Though styles have been successful to mitigate the error-prone nature of
design at a programming language level, it has not addressed the design problem
satisfactorily. For example, the design of the F/A-22 has still not been completed
in spite of significant budget increases, which has large been caused by software
producibility problems [23].

Rather than designing the structure of computation in a programming lan-
guage, Model-Based Design allows the use of high-level and domain-specific
languages. These languages can be tailored to capture the semantic notions of
the domain in which the design problem needs to be solved. This allows the
design engineers to work with a language that is intuitive and close to their
understanding of the problem, and, therefore, is more efficient and less error-
prone.

There are a number of essential aspects to this approach:

• The design of tailored languages needs to be an efficient process itself.

• The evolution of a given language needs to be supported.

• The domain-specific language needs to be automatically transformed into
a structure of computation.

The field of Computer Automated Multiparadigm Modeling (CAMPaM) [19]
aims to address these aspects by establishing a framework to reason about mod-
els of systems at multiple levels of abstraction, transforming between models in
different languages, and providing and evolving modeling languages. This paper
concentrates on the language aspect and shows how a graphical model can be
designed as syntactic extension to a textual model. It furthermore touches upon
the differences between imperative and declarative semantics that is orthogonal
to the language modality and it discusses the interaction between the two.

Section 2 provides a brief introduction to CAMPaM to establish a common
vocabulary and show where this work fits into the overall framework. Sec-
tion 3 discusses the graphical and textual modalities and their characteristics.
Section 4 concentrates on block diagrams specifically and presents the block dia-
gram syntactic extensions to Haskell [15], a functional and declarative language.
Section 5 presents the conclusions of this work.

2 Computer Automated Multiparadigm Model-
ing

The basic CAMPaM aspects are introduced and important notions that it entails
are defined.

68

Ben Denckla and Pieter J. Mosterman Block Diagrams as a Syntactic . . .

2.1 Aspects of CAMPaM
Previous work [19] has established CAMPaM as the field that provides a frame-
work and computational methods to relate and combine models. This requires
handling the different levels of abstraction that are being used for the models as
well as the different formalisms that are being employed. Note that the levels of
abstraction and different formalisms are orthogonal, although often a different
formalism is employed for a different level of abstraction. This makes formalisms
a first class element of study, and establishes the modeling of formalisms as an
essential activity, where a formalism can be thought of as a having a syntax and
semantics [13].

All in all, this puts forward the following aspects of CAMPaM:

• multiple levels of abstraction,

• multiple formalisms,

• formalism modeling, which includes

– modeling the syntax, and

– modeling the semantics.

This paper concentrates on formalisms, in particular on combining and relating
formalisms and the elements of a formalism.

2.2 Definitions
To anchor the work presented in this paper, a set of definitions are given that are
derived from discussions during a number of workshops on Computer Automated
Multiparadigm Modeling1 [2]. A detailed description of this framework and a set
of agreed upon definitions, which may differ from the following, is forthcoming.

The Ogden/Richards semiotic triangle2 can be thought of as establishing a
relationship between concrete syntax, abstract syntax, and semantics. The con-
crete syntax is the actual referent. The abstract syntax is a symbol representing
the referent. The semantics is the thought associated with the referent. This
work restricts the referent to be a sentence.

Definition 1 (Sentence). A presentation of information.

A sentence in a given language is presented in its concrete syntax.

Definition 2 (Concrete Syntax). The presentation of a sentence is in the con-
crete syntax of a language.

A sentence can be represented as an element of an abstract syntax.

Definition 3 (Abstract Syntax). The abstract syntax contains representations
of sentences.

1http://moncs.cs.mcgill.ca/people/mosterman/campam/
2http://en.wikipedia.org/wiki/Semiotic_triangle

69

Block Diagrams as a Syntactic . . . Ben Denckla and Pieter J. Mosterman

In general, an abstract syntax consists of a set of symbols and their possible
combinations. This then requires the abstract syntax to be comprised of entities,
the symbols, and relations, the combinations of symbols.

A sentence relates to information by invoking a thought when it is inter-
preted. This thought is the semantics of the sentence.

Definition 4 (Semantics). The semantics of a sentence is the thought associated
with that sentence.

A sentence is an element of a set of sentences that is called a language.

Definition 5 (Language). A language is a set of sentences.

The sentences in an abstract syntax relate to a set of semantics that is called
the semantic domain of the language that represents the set of sentences.

Definition 6 (Semantic Domain). The semantic domain of an abstract syntax
is the set of thoughts associated with the elements in the abstract syntax.

The semantic domain then consists of the intuitive notions that can be rep-
resented by the elements of the abstract syntax.

To associate a thought with a sentence is to give it a meaning. This corre-
sponds to a mapping of the sentence to a semantics.

Definition 7 (Meaning). The meaning of a sentence in the abstract syntax is
a projection into the semantic domain of the language.

The combination of an abstract syntax, its semantic domain, and a meaning
for each of the elements in the abstract syntax is called a formalism.

Definition 8 (Formalism). A formalism consists of an abstract syntax, a se-
mantic domain, and a meaning.

A semantic domain can be shared completely or partially by many for-
malisms.

A sentence can be translated by changing its syntax.

Definition 9 (Translation). The translation of a sentence is another sentence
in another formalism.

An abstract syntax can be modeled by another or the same abstract syntax,
where the model represents a set of sentences, or language. The language model
is called a metamodel and its meaning is the abstract syntax of the language
that is modeled.

Definition 10 (Metamodel). The meaning of a sentence in a metamodel lan-
guage is an abstract syntax.

This metamodel can be a grammar or an enumeration and may be generative.
The metamodel does not model a formalism, as it does not capture the

meaning of the abstract syntax. Because the meaning is a relation between
abstract syntax and thought, no explicit model of meaning can be provided.
Instead, the meaning is modeled implicitly by a relation between two abstract
syntaxes (that may be the same), an interpretation, where the range abstract
syntax is more intuitive than the domain abstract syntax.

70

Ben Denckla and Pieter J. Mosterman Block Diagrams as a Syntactic . . .

3 Textual and Graphical Languages

The concrete syntax of a language is the presentation of the abstract syntax.
This presentation is often classified as either graphical or textual. At the ab-
stract syntax level, there is no principled distinction between the two.

3.1 Textual Versus Graphical Languages

Whether textual or graphical syntax is preferred depends much on the ap-
plication. Textual syntaxes of many written natural languages, program-
ming languages such as FORTRAN and C, and modeling languages such as
ModelicaTM [11] have proven to be useful and successful. Similarly, graphical
syntaxes of modeling languages such as bond graphs [17], Petri nets [4], and
block diagrams [6] have been very successful in their respective usages as well.

At the core, the difference between graphical languages and textual lan-
guages is that the former often reference expressions by lines (directed or undi-
rected) whereas the latter reference expressions by symbols. The use of lines
allows direct display of referencing relations between expressions, which helps
in quickly building an understanding of the model. The drawback of this ex-
plicitness is that it becomes costly in terms of visual clutter when many such
references are present. Though the use of symbols for referencing prevents the
graphical clutter, it may lead to clutter of the namespace with named references.

Considering graphical models that represent programs, one could say the
value of graphical models is that they allow the graphical structure of a program
to be expressed in a more direct form. Textual syntaxes have to represent the
program (term graph) mostly as a tree, and further, have to represent that
tree as a sequence of lexemes. They represent a graph mostly as a tree by
adding some context-sensitive constraints to a context-free grammar. They
represent a tree as a sequence through mechanisms such as parentheses and
precedence. This is not to say that the more direct, graphical form of expression
offered by graphical models is always preferable, on the contrary. Most textual
programs can be seen as compact, elegant representations of what would be a
very convoluted graph. On the other hand, there are times when it would be
clearer to see the graph directly, and this is what graphical models offer.

It is also possible to imagine a language that has a single notion of reference
with two different ways to view it: one by arrow and one by symbol. So, rather
than arguing a purified approach, a mixture of these approaches is advocated
and typically provided in industrially successful products. For example, the
GoTo and From blocks that SimulinkR© [22] provides allow reference by symbol
in addition to the graphical referencing inherent in block diagrams. Another
example of this mixture of referencing is Subtext [7] and, in a more limited way,
the many integrated development environments (IDE) that allow the user to,
e.g., jump from a site where a symbol is used to the symbol definition.

In general, graphical languages are never full languages; they are always
combined with some other language that defines what individual entities and
relations mean. For example, the meaning of a block in a block diagram is

71

Block Diagrams as a Syntactic . . . Ben Denckla and Pieter J. Mosterman

typically defined by a name inside the block (e.g. “H”), possibly combined with
the use of a shape other than a rectangle for a block, (e.g., the use of a triangle
instead of a rectangle, to indicate a gain, with the gain factor indicated by a
numeral such as “−1” inside the block).

3.2 Related Work

Ellner and Taha [9, 10] provide a good introduction to the unneeded gap between
block diagram and textual languages. They also provide a promising way to
formally bridge this gap with a visual multi-stage calculus called PreVIEW.
The work presented in this paper seeks to bridge this gap in a different but
complementary way. It does not intend to provide a visual language equivalent
to a textual one. Rather, a textual language (Haskell) is only extended with
visual features. Additionally, the work presented in this paper does not address
multi-stage programming and it concerns a full language because of the use of
Haskell. This is in contrast to the use of a minimal calculus that is suitable for
theoretical work, as presented by Ellner and Taha.

The Subtext language [7] is notable for the way it bridges the textual/graph-
ical gap. Names (identifiers) are present in Subtext but are more like comments
upon its fundamental concepts of sources and references connected by links,
which are represented explicitly. The HOPS language is notable [16] for its im-
plementation of a Haskell-like language using a term graph instead of a textual
representation. The Vital language [12] is notable for its implementation of a
Haskell environment in which data structures can be viewed and manipulated
as diagrams.

The particular idea of implementing a block diagram language as syntactic
extensions to Haskell is discussed and partially implemented by Reekie [21]. This
is closely related to the approach of implementing a domain-specific language by
embedding it in a general-purpose language [14]. However, in this case, the block
diagram language needs new syntax, so it cannot, in the strictest sense, be called
embedded. Implementing a new language by extending syntax or by embedding
can be seen as part of Landin’s 40-year-old program to avoid reinvention of
general-purpose language capabilities when inventing a new language [18]. Of
course this is not always possible and desirable, but the work presented in this
paper intends to illustrate that it is in the case of block diagrams.

Again, the point made is that it is not imperative to make a choice: the
approaches can be mixed by extending a textual language with block diagrams.

3.3 Semantics of Block Diagrams

Block diagrams have become very popular among control system engineers to
support their design efforts. In particular, the support for computational sim-
ulation by block diagram based products such as Simulink has been an impor-
tant enabler for this success. Furthermore, the constraints that are enforced
by block diagrams address the specific needs of the control system discipline.
The corresponding limitations in expressiveness, as compared to general pur-

72

Ben Denckla and Pieter J. Mosterman Block Diagrams as a Syntactic . . .

pose programming languages, prevent the user from making mistakes that can
happen in a general language of computation. For example, Simulink supports
only a very stylized form of recursion which cannot cause infinite loops or stack
overflows.

On the other hand, the semantics of block diagram languages are often
informal, which suffices for many users who infer the semantics through trial
and error or by example, and do not rely on a documented semantics.

Because a formal semantics is not required for most successful applications
of a language and to achieve expedient and convenient implementation of in-
terpreters, often a programming language such as C is used as the language for
defining the semantics. For example, the semantics of Modelica is defined by the
source code of its supporting products. It is evident that semantic discrepancies
between products that support the same language are inevitable.

Furthermore, the freedom of expression that programming languages such as
C allow can lead to semantic inconsistency when adding language features. For
example, in a pure interpretation, block diagrams are a declarative language,
but the use of an imperative language to define the semantics of new language
elements has allowed introducing imperative notions in the form of the Merge
block in Simulink. This block produces as output the last computed input, and,
therefore, the outcome becomes dependent upon the execution order. In case
of the Merge block, the use of imperative notions has lead to a very powerful
language construct that greatly aids the modeling task. In other words: “One
user’s feature is another user’s bug.”

Another implication of the use of an imperative language to define the seman-
tics of a declarative language is that it becomes difficult to integrate imperative
notions with the declarative language in a consistent manner. In the implemen-
tation, there is no distinction between the two, and, therefore, maintaining a
consistent separation and interaction becomes problematic.

History has shown, though, that such limitations constitute no impediment
to the success of a language (natural languages included). However, in applica-
tions where categorical evaluations are required, a clear definition of semantics
is often required. This paper aims to illustrate that such a definition can be
achieved for block diagrams. In particular, the use of a declarative language
such as Haskell to define the semantics prevents many of the issues discussed.
Furthermore, because block diagrams rely on some other language to provide
the symbolic environment in which blocks are defined, it is a short leap to make
this environment a scope in Haskell.

4 Block Diagrams and Haskell

Building on previous work [5], BdHas is presented as Haskell [15] plus syntactic
extensions for block diagrams. A block diagram can be used inside a Haskell
expression, and a Haskell expression can be used inside a block. The interpre-
tation of a BdHas program is the Haskell code that results from translating all

73

Block Diagrams as a Syntactic . . . Ben Denckla and Pieter J. Mosterman

let
s iot =

sand

sand

sdelay iot

sor

snot

-

-

-

-

-

-

-

-

--

-

r

pi

ti

g

po

to

in

s True s False s False-
-

-
-

-
-

?
6

?
6

?
6r1

g1
r2

g2
r3

g3

Figure 1: Token ring arbiter in BdHas

of its block diagrams to pure Haskell. Before describing this translation, an
introduction to BdHas is provided by means of an example.

4.1 Introduction to BdHas

The example used to introduce BdHas is that of a simplified token ring bus [8].
In each clock cycle, the stations on the bus “decide amongst themselves” which
station (if any) will use the bus. The decision is made in the following manner:

• A station has permission to use the bus if it owns the token or has been
passed permission to use the bus.

• A station with permission to use the bus grants itself the bus if it has
requested the bus.

• Otherwise it passes permission to use the bus to the clockwise-next station.

• At the end of each clock cycle, token ownership is transferred to the
clockwise-next station.

Figure 1 shows the arbiter as a hierarchical block diagram in BdHas. The
functions sdelay , sand , sor , and snot are assumed to be defined elsewhere to be a
unit delay and stream versions of the boolean operators “and,” “or,” and “not,”
respectively. The symbol r is short for “bus requested,” g for “bus granted,”
pi/po for “permission in/out,” ti/to for “token ownership in/out,” and iot for
“initially owns token.”

74

Ben Denckla and Pieter J. Mosterman Block Diagrams as a Syntactic . . .

The symbols labeling arrow tails (r ,g ,pi , etc.) are comments to aid under-
standing; they have no semantic significance as they would in a textual program.

To execute this BdHas program, it is passed to a program that translates
the syntactic block diagram extensions into pure Haskell, yielding the code in
Fig. 2. Note that some automatically generated identifiers have been renamed
to make them more meaningful.

Although hand-written code may be quite different, the automatically gen-
erated code is a reasonable implementation and thus conveys a notion of how
advantageous the use of a block diagram can be over textual code.

let
s iot =

λ(r , pi , ti)→
let

g = sand (r , o)
po = sand (n, o)
to = sdelay iot ti
o = sor (pi , to)
n = snot r
in
(g , po, to)

in
λ(r1 , r2 , r3)→

let
(g1 , po1 , to1) = s True (r1 , po3 , to3)
(g2 , po2 , to2) = s False (r2 , po1 , to1)
(g3 , po3 , to3) = s False (r3 , po2 , to2)
in
(g1 , g2 , g3)

Figure 2: Token ring arbiter translated from BdHas to Haskell

4.2 Translating Block Diagrams to Haskell
The translation from BdHas to Haskell proceeds roughly as follows. Give a
unique identifier (ID) to each arrow tail junction. An arrow tail junction (ATJ)
is a point where one or more arrow tails coincide. Translate each block to a
declaration of the form y = f u where

• y is a tuple of the IDs of the ATJs on the block,

• u is a (possibly empty) tuple of the IDs of the ATJs for each arrow whose
head is on the block, and

• f is the translation of the BdHas expression inside the block.

Translate the diagram to

75

Block Diagrams as a Syntactic . . . Ben Denckla and Pieter J. Mosterman

λ(i , i , ...)→
let
(i , i , ...) = e (i , i , ...)
(i , i , ...) = e (i , i , ...)
...
in
(i , i , ...)

Figure 3: General form of block diagrams translated to Haskell

• a λ expression binding a (possibly empty) tuple of the IDs of the ATJs
that are not on any block, where the body of this λ expression is

– a let expression containing the (possibly empty) list of declarations
from the block translations, where the body of this let expression is

∗ a tuple of the IDs of the ATJs for each arrow whose head is not
on any block.

So, in general, block diagrams translate to expressions of the form shown
in Fig. 3, where i is a meta-variable ranging over the IDs of the ATJs and e
is a meta-variable ranging over the expressions that result from translating the
contents of the blocks.

4.3 Integrating Imperative Notions

The desire to integrate imperative notions in block diagrams has been discussed
in Section 3.3. In Haskell, it is straightforward to create a pseudo-imperative
domain-specific embedded language in which integers can be added and an “in-
struction count” of the tally of additions at a point in the instruction sequence
can be retrieved.

For example, with a few lines of helper code not shown, the following function
addSeq = do

x ← add 1 2
c ← get
y ← add x 3
z ← add y c
return z

returns 7. But, if the line c ← get is moved to one line later, i.e.,
addSeq = do

x ← add 1 2
y ← add x 3
c ← get
z ← add y c
return z

it will return 8.

76

Ben Denckla and Pieter J. Mosterman Block Diagrams as a Syntactic . . .

5 Conclusions

Domain specific languages help efficient and effective design of systems with a
significant computational component. A classification into textual and graphi-
cal languages can be made. Whereas textual languages often lack a graphical
component, graphical languages typically include textual extensions.

The definition of semantics for a language has been discussed as a syntactic
translation. In many languages, the semantics are defined by the source code of a
product that supports each language. This often leads to complications because
of the implementation freedom that general-purpose programming languages
such as C provide.

This paper discussed the use of Haskell to provide semantics for block dia-
grams instead. The declarative nature of Haskell renders it well-suited for this
purpose. Furthermore, this provided the basis for including block diagrams into
Haskell as a syntactic extension. The translation of block diagrams into Haskell
results in a uniform pure Haskell representation. Additionally, this facilitates
the use of a full programming language as an action language for block diagrams.

This paper has further briefly illustrated how imperative notions may be
included in Haskell. Rather than using imperative programming languages to
define declarative semantics, this may result in more rigorous and consistent
definition of mixed imperative/declarative languages.

A working implementation based on a textual input of the block diagrams
was presented while a visual editor is not yet available.

6 Acknowledgment

The authors wish to acknowledge the other attendees of the 2004 through 2006
editions of the International Workshop on Computer Automated Multi-Paradigm
Modeling:3 Jean-Sébastien Bolduc, Peter Bunus, Gary Godding, David Hill,
Stephen Neuendorfer, Hans Vangheluwe, Mamadou Traore, Thomas Kühne,
Hessam Sarjoughian, Vasco Miguel Moreira do Amaral, Adam Cataldo, Jerome
Delatour, Jean-Marie Favre, Holger Giese, Anneke Kleppe, Juan de Lara, Ti-
hamér Levendovszky, Jie Liu, Alexandre Muzy, and Ernesto Posse for their help
in developing the CAMPaM framework.

References

[1] CAN specification. Technical Report, 1991. Robert Bosch GmbH.

[2] CAMPaM ’06 Attendees. CAMPaM 2006 workshop position statements.
Technical Report SOCS-TR-2006.2, McGill School of Computer Science,
2006.

3http://moncs.cs.mcgill.ca/people/mosterman/campam/

77

Block Diagrams as a Syntactic . . . Ben Denckla and Pieter J. Mosterman

[3] Paul Barnard. Graphical techniques for aircraft dynamic model devel-
opment. In American Institute of Aeronautics and Astronautics (AIAA)
Modeling and Simulation Technologies Conference and Exhibit. Providence,
Rhode Island, August 2004. CD-ROM, paper number AIAA-2004-4808.

[4] René David and Hassane Alla. Petri Nets & Grafcet. Prentice Hall Inc.,
Englewood Cliffs, NJ, 1992. ISBN 0-13-327537-X.

[5] Ben Denckla, Pieter J. Mosterman, and Hans Vangheluwe. Towards an
executable denotational semantics for causal block diagrams. In Proceedings
of The 5th OOPSLA Workshop on Domain-Specific Modeling, San Diego,
CA, October 2005. ISBN 951-39-2202-2.

[6] Richard C. Dorf. Modern Control Systems. Addison Wesley Publishing
Co., Reading, MA, 1987.

[7] Jonathan Edwards. Subtext: uncovering the simplicity of programming.
In Proceedings of OOPSLA ’05, pages 505–518. ACM Press, 2005.

[8] Stephen A. Edwards and Edward A. Lee. The semantics and execution of a
synchronous block-diagram language. Sci. Comput. Program., 48(1):21–42,
2003.

[9] Stephan Ellner. PreVIEW: An untyped graphical calculus for resource-
aware programming. Master’s thesis, Rice U., 2004.

[10] Stephan Ellner and Walid Taha. The semantics of graphical languages. In
Informal Proceedings of the Workshop on Designing Correct Circuits, 2006.

[11] Hilding Elmqvist et al. ModelicaTM–A unified object-oriented langauge for
physical systems modeling: Language specification, December 1999. version
1.3, http://www.modelica.org/.

[12] Keith Hanna. http://www.cs.kent.ac.uk/projects/vital/index.html.

[13] David Harel and Bernhard Rumpe. Modeling languages: Syntax, semantics
and all that stuff. Technical Report MCS00-16, The Weizmann Institute
of Science, 2000.

[14] Paul Hudak. Modular domain specific languages and tools. In Proceedings:
Fifth International Conference on Software Reuse, pages 134–142. IEEE
Computer Society Press, 1998.

[15] Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge U.
Press, April 2003.

[16] Wolfram Kahl. The term graph programming system HOPS. In Tool
Support for System Specification, Development and Verification, pages 136–
149, March 1999.

78

Ben Denckla and Pieter J. Mosterman Block Diagrams as a Syntactic . . .

[17] D.C. Karnopp, D.L. Margolis, and R.C. Rosenberg. Systems Dynamics: A
Unified Approach. John Wiley and Sons, New York, 2 edition, 1990.

[18] P. J. Landin. The next 700 programming languages. Commun. ACM,
9(3):157–166, 1966.

[19] Pieter J. Mosterman and Hans Vangheluwe. Computer automated multi-
paradigm modeling: An introduction. SIMULATION: Transactions of The
Society for Modeling and Simulation International, 80(9):433–450, Septem-
ber 2004.

[20] Henry M. Paynter. Analysis and Design of Engineering Systems. The
M.I.T. Press, Cambridge, Massachusetts, 1961.

[21] H. J. Reekie. Realtime Signal Processing: Dataflow, Visual and Functional
Programming. PhD thesis, U. of Technology at Sydney, Australia, 1995.

[22] SimulinkR©. Using SimulinkR©. The MathWorks, Inc., Natick, MA, March
2006.

[23] Michael Sullivan. TACTICAL AIRCRAFT–F/A-22 and JSF acquisition
plans and implications for tactical aircraft modernization. Technical Re-
port GAO-05-519T, United States Government Accountability Office, April
2005.

79

An Integration Concept for Complex
Modelling Techniques

Benjamin Braatz
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany
bbraatz@cs.tu-berlin.de

Abstract. In this paper a concept for the integration of complex modelling techniques
like e. g. UML is proposed. The integration is done by translating complex models
consisting of parts following different modelling paradigms into a common low-level
language, which is designed to be minimalistic enough to serve as a source for code
generation and verification. On the other hand the low-level language should be ex-
pressive enough to allow the integration of the most common structural, behavioural,
and constraint modelling languages. As an example for a complex modelling technique
a derivation of the UML, which focuses on a small subset of the UML diagrams, but
also adds some additional techniques, is considered. Moreover, a low-level language
for object-oriented modelling techniques is sketched.

Keywords: UML, Semantic Integration, Code Generation

1 Introduction

Contemporary modelling techniques follow a large variety of different paradigms.
For example, the Unified Modeling Language (UML, see [7]) contains state ma-
chines, activity diagrams, sequence and collaboration diagrams, and the Object
Constraint Language (OCL, see [8]) to describe the behaviour of a modelled
system. Other techniques like structured flowcharts as introduced by Nassi and
Shneiderman (see [6]), graph transformation systems (see e. g. [4]), different
kinds of process algebras and Petri nets, and temporal or modal logic formalisms
are also in common use.

It would be very desirable to be able to use multiple techniques from this
wealth of possibilities in one project, in order to describe the various aspects of
the system with the technique, which fits best. This approach can, however, only
develop its full potential, if the interconnections between the used techniques are
made explicit. Ideally all applied techniques should be semantically integrated,
i. e. interpreted in a common semantic domain.

This paper proposes an abstract concept introduced in Sect. 2 for integrating
complex, multi-paradigm modelling techniques by translating complex models
into a low-level language, which is designed to facilitate the defintion of a formal
semantics, the generation of code from models, and the formal verification of
models.

81

An Integration Concept for Complex Modelling . . . Benjamin Braatz

In Sect. 3 a complex modelling technique based on the UML is introduced,
which is then translated exemplarily into an object-oriented low-level language
sketched in Sect. 4. Finally, in Sect. 5 the approach is summarised, related work
is discussed and some ideas for future work are given.

2 Abstract Integration Concept

The concept proposed in this paper assumes a complex modelling technique,
given by a class Mod of models containing parts, which are described following
multiple paradigms. These models are translated into a low-level language,
given by a class L3 of low-level models, leading to a function Int : Mod→ L3.
The low-level language should contain the essential information included in the
complex models, but encode it in a paradigm-independent way. Each low-level
model L ∈ L3 can be decomposed into its constructive part Beh(L) and its
descriptive part Prop(L), which share a common structural part Str(L). (Cf.
Fig. 1.)

Mod

Mod

L3
Int

L

Str
Str

)L(Str

Beh

Constr

(Beh)L
CStr

(=)

DescrProp

()LProp

(=)

DStr

Figure 1: Relations between complex and low-level models

The rationale behind this decomposition is the strict seperation of the mod-
elled behaviour and the properties, which have to be fulfilled by the behaviour.
This seperation aids in providing tools for the low-level language. The con-
structive behaviour models can be used as a basis for code generation and as
the axioms or models in verification, while the descriptive property models are
suited to serve as a foundation for tests and as the target or specification in ver-
ification. The common structure models are needed to facilitate the connection
between both parts of an L3 model.

Note, that the seperation of concerns is established only in the low-level
language. The complex modelling technique may, and most often will, combine
constructive, descriptive, and structural aspects in the same diagrams. For
example, a UML class diagram contains mostly structural information, but may
also exhibit constraints like the multiplicities of attributes and associations or
OCL pre-post-conditions and invariants, which are to be translated into the
descriptive part of the corresponding low-level language model. It may even
contain some OCL body constraints for query operations, which do not alter the

82

Benjamin Braatz An Integration Concept for Complex Modelling . . .

state of the system. Such constraints already specify the complete behaviour of
the operation in question and may therefore be translated into the constructive
part of the L3 model.

A formal semantics for the low-level language will be provided by assigning a
class of formal system representations Sys(Str) to each structural model Str , a
subclass SemStr (Prop) of all systems satisfying the specified properties to each
descriptive model Prop, and a single constructed system BuildStr (Beh) to each
constructive model Beh. (Cf. Fig. 2.)

Str

Descr

Constr

Prop

Beh

Str Sys (Str)

BuildStr (Beh)

Prop(StrSem)

Figure 2: Semantics of low-level models

The exact definition of the semantic domain and functions is out of the scope
of this paper. A draft version of such a semantics can be found in [3], which is
based on transformation systems (see [5]) and adhesive high-level replacement
systems (see [4]).

The formal semantics provides for the definition of consistency of a model by
requiring that the behavioural part of the model satisfies the properties stated
in the descriptive part, i. e. a low-level language model L ∈ L3 is consistent iff

BuildStr(L)(Beh(L)) ∈ SemStr(L)(Prop(L)) .

By composition with the integration function Int the formal semantics and the
notion of consistency are also applicable to the complex modelling technique
Mod.

The advantages of this approach lie in the decoupling of the complex mod-
elling technique from the low-level language, for which the formal semantics is
defined, and for which tools for generation and verification can be written. On
the one hand, the semantics and tools do not have to deal with all the subtleties
and “syntactic sugar” of the complex modelling technique, but can be based
on the more minimalistic low-level language. On the other hand, the complex
modelling technique can be enhanced by additional techniques rather easily, be-
cause only the class Mod and the integration function Int have to be adopted.
Semantics and tools for extensions of the complex technique are then obtained
automatically.

In the next section the idea of a complex integrated modelling technique will
be illustrated by a small multi-paradigm modelling technique derived from the
UML, while in Sect. 4 an object-oriented low-level language will be sketched.

83

An Integration Concept for Complex Modelling . . . Benjamin Braatz

3 CUML – The Complex Modelling Technique

As complex modelling technique we consider a derivation of the UML, which
we will call CUML (Compact, Comprehensive, and Constructive UML). It uses
only some of the features of UML, namely class diagrams, activity diagrams,
and OCL constraints, but enhances them with transformation rules and struc-
tured flowcharts (also known as Nassi-Shneiderman diagrams, see [6]). These
extensions were already proposed in [2] to yield a constructive, object-oriented
modelling technique.

According to the intention of this paper, CUML is designed to allow code
generation and formal verification. Therefore, we require stricter modelling than
the original UML, which allows to leave a lot of features unspecified and describe
requirements, actions, and other model properties in natural language.

We will describe the ideas along a small example of a shopping cart ap-
plication, whose class diagram is shown in Fig. 3. The shopping cart itself is
modelled by the Cart class containing Item instances, which in turn reference
the corresponding Product instance. Instances of the class Catalog are used to
administrate the Product instances.

pkg shopping

quantity:Integer

Item(c:Cart,p:Product,q:Integer):Item
merge(i:Item)

Item
0..*

1cat

prods
prod

1
name:String
price:Integer

Product(c:Catalog,n:String,p:Integer):Product

Cart():Cart
getTotalCost():Integer{query}
mergeItems()

0..*items

1cart

Cart

Product

Catalog():Catalog
search(n:String):Product[0..*]{query}

Catalog

Figure 3: Class diagram of the example

Besides the usual features of class diagrams (declaring signatures of classes
with properties and operations, as well as associations with multiplicities and
navigability), we also use the possibility to specify if an operation is static for
the constructors of the classes by underlining them and the possibility to specify
if an operation is a query, i e. if it changes the state of the system.

These queries are on the one hand an operation for calculating the total
cost of the items in a shopping cart, on the other hand a search operation on
the products in a catalog. They are specified in Fig. 4(a) and 4(b) by OCL
body constraints, which are an adequate choice because of the freeness from
side effects in OCL. The total cost is calculated by iterating over the items in a
shopping cart and adding the number mulitplied by the price of a single product,
while searching is realised by the select operation predefined in OCL.

84

Benjamin Braatz An Integration Concept for Complex Modelling . . .

context shopping::Cart::getTotalCost()
body: self.items−>iterate(i:Item,sum:Integer=0|

sum+i.quantity*i.prod.price)

(a) Cart.getTotalCost operation

context

body:

shopping::Catalog::search(n:String):Set(Product)
self.prods−>select(name=n)

(b) Catalog.search operation

context shopping::Item::merge(i:Item)
pre:

post:

self.prod=i.prod
self.cart=i.cart

self.quantity=self.quantity@pre+
i.quantity@pre

not self.cart.items−>includes(i)

(c) Item.merge operation

context shopping::Cart::mergeitems()
post: self.items−>forAll(i1,i2:Item|

i1<>i2 implies i1.prod<>i2.prod)
self.items@pre.prod−>asSet()=

self.items.prod−>asSet()

(d) Cart.mergeItems operation

Figure 4: OCL constraints for the example

In contrast to the body constraints, the OCL pre-post conditions in Fig. 4(c)
and 4(d) do not model the corresponding operations completely but merely
specify some requirements. These operations are intended to merge items in the
shopping cart, which reference the same product.

In order to model operations for local changes of the system, CUML uses a
transformation rule notation as shown in Fig. 5. The advantage of this notation
over activity diagrams and similar techniques is the declarative nature of trans-
formation rules, which make the effects of operations on the object configuration
readily visible by showing the relevant part of the system before the operation
on the left-hand side and after the operation on the right-hand side.

The constructor for products in Fig. 5(a) creates a new product with the
given name and price and adds the result to the given catalog, while the con-
structor for items in Fig. 5(b) creates a new item in the given shopping cart
associated to the given product with the given quantity. The third rule in
Fig. 5(c) models the behaviour of the operation for merging items in a shopping
cart. The left-hand side of this rule shows that the operation is only applicable
if the cart and the product of the item on which the operation is called and the
parameter item are identical. The right-hand side then models the effect of the
operation, where the parameter item is deleted and the quantities of self and
parameter item are accumulated in self.

While OCL constraints follow a functional side-effect free paradigm suitable
for modelling queries and transformation rules realise a declarative approach
adequate for local changes of the system, the third behavioural technique we
want to use in CUML is an imperative one, which can be used to model algo-

85

An Integration Concept for Complex Modelling . . . Benjamin Braatz

rule

c:Catalog

name=n
price=p

return:Product c:Catalog
prods cat

shopping::Product::Product(c,n,p)

(a) Product constructor

rule

c:Cart

p:Product

cart

items
prod

c:Cart

quantity=q

p:Productreturn:Item

shopping::Item::Item(c,p,q)

(b) Item constructor

rule

itemscart

cart

prod

prod

cart items
self:Item

p:Product

i:Item

c:Cart c:Cart
quantity=quantity@pre+

self:Item

items

i.quantity@pre

prod

p:Product

shopping::Item::merge(i)

(c) Item.merge operation

Figure 5: Transformation rules for the example

rithmic operations. In Fig. 6, we see a structured flowchart for the operation
merging all items with identical products in a shopping cart.

flow

for i:self.items

for j:self.items

i.prod=j.prodandi<>j

i.merge(j)

shopping::Cart::mergeItems()

Figure 6: Flowchart for Cart.mergeItems operation

These structured flowcharts are a derivation of the flowcharts of Nassi and
Shneiderman in [6]. In the example we can see that one of the advantages over
graph-like techniques like activity diagrams and state machines is the visibility
of the algorithmic structure with two nested iterations and a decision. Such
algorithmic details are complicated to model adequately in graph-like modelling
techniques.

However, we also want to integrate activity diagrams into CUML, because
they are an adequate modelling technique for operations, which are less algo-
rithmic, but rather workflow-like, though we do not have an example for such
an operation in our small example.

In the next section we sketch, how the different techniques presented in this
section may be integrated into a common object-oriented low-level language.

86

Benjamin Braatz An Integration Concept for Complex Modelling . . .

4 L3 – The Low-Level Language

As already stated in the abstract concept in Sect. 2, the low-level language will
be subdivided into structural, descriptive, and constructive aspects. We will use
a notation close to the UML notation for low-level models. In an implementation
of this concept, low-level models would probably not be visualised at all, but
rather only used in the backend, so that the developer only has to deal with
(C)UML diagrams.

In Fig. 7, the structural part of the low-level model of the example is shown.
It is still very similar to the class diagram, but abstracts from properties, which
have to be fulfilled by the implementation rather than being ensured directly by
the structure. Associations and properties are both translated into attributes,
where the inverseness of the association ends will be required in the descriptive
part. Likewise multiplicities are only considered in deciding if an attribute or
parameter is a reference to a single object or a collection of objects, representing
the multiplicities 0..1 and 0..*, respectively. Other multiplicities will also be
considered in the property model.

prods:Set(Product)

search(n:String):Set(Product)
Catalog():Catalog

Catalog Product

Product(c:Catalog,n:String,p:Integer):Product

price:Integer
name:String
cat:Catalog

Item

cart:Cart

Item(c:Cart,p:Product,q:Integer):Item
merge(i:Item)

quantity:Integer
prod:Product

mergeItems()
getTotalCost():Integer
Cart():Cart

items:Set(Item)

Cart

Str

Figure 7: Structural low-level model of the example

In order to be able to represent all kinds of collections available in the UML,
the low-level language should support sets, bags, sequences, and ordered sets.
These collection types are retained in the low-level model rather than being
flattened, because the code generation is likely to be able to translate them
to structures provided by the underlying platform, e. g. the Java Collection
Framework, directly.

The descriptive model in Fig. 8 contains translations of the association and
multiplicity constraints from the class diagram and the OCL pre-post conditions,
where all these are translated into first-order logic. A special keyword query is
introduced to capture the property of an operation being a query.

Associations and multiplicities are invariants of object configurations. In
order to be able to reuse them, abbreviations for these invariants are defined in
the upper part of Fig. 8. Invariants are added to all pre and post conditions of all
operations (except for the queries, since they preserve the object configuration,
anyway). Moreover, the OCL pre-post conditions are translated into first-order

87

An Integration Concept for Complex Modelling . . . Benjamin Braatz

assocCartItems: for all

for all

multProd:

multCat:

for all

for all

for all

i:Item,c:Cart: i.cart=c <=> i
p:Product,c:Catalog: p.cat=c <=> p in c.prods

i:Items: i.cart
i:Items: i.prod
p:Product: p.cat defined

Cart::getTotalCost()

multCart:

assocCatProds:

query

pre: assocCartItems,assocCatProds,

defined

defined

in c.items

Item::Item(c:Cart,p:Product,q:Integer):Item

multCart,multProd,multCat

assocCartItems,assocCatProds,post:

Catalog::search(n:String):Set(Product)

Product::Product(c:Catalog,n:String,p:Integer):Product
query

assocCartItems,assocCatProds,pre:

multCart,multProd,multCat

multCart,multProd,multCat

Item::merge(i:Item)

assocCartItems,assocCatProds,post:

multCart,multProd,multCat

Cart::mergeItems()
pre: pre:assocCartItems,assocCatProds,

multCart,multProd,multCat,

self.cart=i,self.prod=i,
q1:=self.quantity,q2:=i.quantity

post:

not i in self.cart.items
self.quantity=q1+q2

assocCartItems,assocCatProds,

multCart,multProd,multCat,

assocCartItems,assocCatProds,

(i1<>i2 => i1.prod<>i2.prod)
i1,i2:Item: i1,i2for all in self.items =>

multCart,multProd,multCat,

assocCartItems,assocCatProds,post:

oldits:=self.items.prod
multCart,multProd,multCat,

for all p:Product:
p in oldits <=> p in self.items.prod

Prop

Figure 8: Descriptive low-level model of the example

logic, where the OCL @pre expressions are interpreted by using variables bound
at pre time and reused at post time.

Now, the different behavioural techniques are translated into the low-level
language, where constructive low-level models are visualised in the style of UML
acitivity diagrams. But, while complex activity diagrams might employ a lot of
features and “syntactic sugar” like e. g. complex object flows or OCL constraints
as guards, the constructive low-level models may only use a very limited set of
atomic actions, which we will see in the following examples.

In Fig. 9, the translations of the OCL body constraints are depicted. Since
both operations iterate over a collection of objects, we need atoms to support
this iteration. The actions iterate, hasnext, and next serve this purpose.
When generating code from a low-level model, these should map relatively easy
to iterator concepts on the target platform. The getTotalCost operation in
Fig. 9(a) only uses assignments to the return variable and simple arithmetic
calculations in addition to the iteration actions, while the search operation in
Fig. 9(b) also uses atoms {} and add for manipulating a set of objects.

In Fig. 10, the translations of the transformation rules from Fig. 5 are given.
Here, we see that the low-level language also supports parallelism. This can be
employed when generating code for a target platform also supporting parallelis-
ing independent activities, like e. g. the .NET platform. The possible parallelism
arises from the fact, that transformation rules do not prescribe a certain order,
in which the changes to the object configuration shall be applied. The exact
model transformation from the high-level transformation rules to the low-level
language is out of the scope of this paper.

88

Benjamin Braatz An Integration Concept for Complex Modelling . . .

Beh Cart::getTotalCost():Integer

return := 0

return := return +
i.quantity * i.prod.price

hasnext[

[else]

(it)]

(self.items)iterateit :=

nexti:Item := (it)

(a) Cart.getTotalCost

Beh

hasnext[(it)]

iterateit :=

Catalog::search(n:String):Set(Product)

return := {}

(self.prods)

next (it)p:Product :=

[else]

[else]

[p.name=n]

add (return,p)

(b) Catalog.search

Figure 9: Contructive low-level model for OCL constraints

The two constructor models in Fig. 10(a) and 10(b) make use of the atom
new, which allocates a new uninitialised object. In Fig. 10(c), where the merge
operation is modelled, we see how patterns in the left-hand side of a rule are
translated into a decision constraining the applicability of the rule. Moreover, we
see that attributes, which are accessed with an @pre notation in the right-hand
side of a rule, are saved into variables prior to applying the changes. The merge
operation also makes use of an additional atom remove for the manipulation
of object sets and the discard atom for ending the life cycle of an object.
The latter may be ignored, when generating code for a platform with garbage
collection, but may be useful on other platforms like C++, where objects have
to be destroyed explicitly.

Finally, in Fig. 11, the translation of the small flowchart from Fig. 6 is given.
It uses two nested iterations over the same set and as a last kind of atomic action
a call to another operation.

Now, we have seen the whole low-level model of our small example. As
stated before, its purpose is the facilitation of code generation and verification.
The suitability of the constructive model parts for code generation should be
quite obvious, since the atoms used in the model are quite close to the basic
instructions on common object-oriented platforms or the operations available on
their collection implementations, respectively. For verification, a first approach
could be the definition of a Hoare-like calculus, such that the per-operation
requirements in the descriptive model could be verified along the structure of
the corresponding operations.

89

An Integration Concept for Complex Modelling . . . Benjamin Braatz

Beh

return := new Product

add (c.prods,return)return.cat := creturn.price := preturn.name := n

Product::Product(c:Catalog,n:String,p:Integer):Product

(a) Product.Product

Beh

add

Item::Item(c:Cart,p:Product,q:Integer):Item

return.quantity := q return.cart := creturn.prod := p (c.items,return)

return := new Item

(b) Item.Item

Beh Item::merge(i:Item)

[self.cart=i.cart and self.prod=i.prod]

q1:Integer := self.quantity q2:Integer := i.quantity

(self.cart.items,i)

discard i

self.quantity := q1+q2

[else]

remove

(c) Item.merge

Figure 10: Contructive low-level model for transformation rules

90

Benjamin Braatz An Integration Concept for Complex Modelling . . .

iterate (self.items)

i:Item := next (iti)

itj := iterate (self.items)

j:Item := next (itj)

i.merge(j)

[hasnext (iti)]

[hasnext (itj)]

[i<>j and i.prod=j.prod]

[else]

[else]

[else]

Beh Cart::mergeItems()

iti :=

Figure 11: Constructive low-level model for flowchart

5 Summary, Related and Future Work

In this paper an abstract concept for the integration of complex multi-paradigm
modelling techniques was proposed. It is build around the idea of translating
complex, user-friendly models into a minimalistic, machine- and theory-friendly
low-level language. This low-level language can be divided into structural, de-
scriptive, and constructive elements, which is useful to ease code generation and
verification.

As an instantiation of the concept, a complex modelling technique based
on the UML and an object-oriented low-level language were sketched. The
UML-based modelling technique uses behavioural techniques from different par-
adigms, namely functional OCL constraints, declarative transformation rules,
and imperative flowcharts, while in the low-level language all these techniques
are translated into the same style of low-level action flows.

A lot of formalisms have been proposed as rigorous foundations for complex
modelling techniques. For example, a mapping from UML 1.3 activity dia-
grams to abstract state machines is proposed by Börger et al. (see [1]). Other
approaches try to use process algebras as a semantic domain. While these pro-
posals have the advantage of readily available verification and analysis tools,
they need a lot of encoding to represent complex structures using the means of
the algebraic formalisms, which reduces the intuition behind the translations.
Moreover, the approach in this paper targets generation of code for the behav-
ioural models, where algebraic formalisms would be a detour, given that UML
activities already have a rather imperative structure.

91

An Integration Concept for Complex Modelling . . . Benjamin Braatz

In [9], Störrle and Hausmann evaluate the possibility to use Petri nets as
a semantic domain for UML activity diagrams, which is also suggested by the
UML specification itself. They come to the conlusion, that, in order to integrate
all possibilities of activity diagrams, different variants of Petri nets would have
to be integrated in a new formalism, which would then have neither tools nor
theory available. This observation may also serve as a reason for deriving the
new low-level language proposed in this paper, which is specifically designed to
capture the features of complex object-oriented systems.

A first point of future work is the establishment of meta-models for both
CUML and the low-level language and the development of a tool-supported
model transformation between these models, which implements the translation
sketched in this paper. Furthermore, the implementation of a proof-of-concept
code generator for the low-level language is planned.

In order to retain compatibility with the widely used UML standard and
other UML tools, we will try to formalise CUML as a UML profile, so that class
diagrams, OCL expressions and activity diagrams are restricted to the subclass
we consider, and transformation rules and flowcharts are realised as concrete
syntaxes for special kinds of UML activities.

On the theoretical side, a formal semantics for the low-level language will
be developed, which will also allow to reason about compositionality of low-
level and complex models. For this purpose, concepts of visibility and imports
of model elements will be introduced into the modelling techniques. A formal
semantics will also allow the development of formal refinements and refactorings
of models.

Moreover, formal analysis methods and tools should be developed for the
low-level language, where exisiting work on verification techniques for graph
transformation systems could serve as a basis, since the formal semantics will
execute the low-level models by rules, which are very similar to graph rewriting
rules.

Finally, the extension of the complex modelling technique with domain-
specific extensions is an interesting line of future research. These extensions
should be possible rather easily, because of the modular structure of the ap-
proach. The low-level language can be left unchanged and the new domain-
specific language only has to be translated into this fixed low-level language,
where new domain-specific languages can either be translated into correspond-
ing UML diagrams providing for an indirect integration, formulated as an ad-
ditional UML profile with its own translation into the low-level language, or
equipped with a meta-model independent of the UML meta-model.

References

[1] Börger, E., A. Cavarra and E. Riccobene, An ASM semantics for uml activ-
ity diagrams, in: Algebraic Methodology and Software Technology, AMAST
2000, LNCS 1816, Springer, 2000 pp. 293–308.

92

Benjamin Braatz An Integration Concept for Complex Modelling . . .

[2] Braatz, B., A rule-based, integrated modelling approach for object-oriented
systems, in: Graph Transformation and Visual Modeling Techniques (GT-
VMT 2006), ENTCS (2006), to appear.

[3] Braatz, B. and A. R. Kniep, Integration of object-oriented modelling tech-
niques (2006), draft version available from http://tfs.cs.tu-berlin.de/
~bbraatz/papers/BK06-TR.pdf.

[4] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Alge-
braic Graph Transformation,” Monographs in Theoretical Computer Science,
Springer, 2006.

[5] Große-Rhode, M., “Semantic Integration of Heterogeneous Software Specifi-
cations,” Monographs in Theoretical Computer Science, Springer, 2004.

[6] Nassi, I. and B. Shneiderman, Flowchart techniques for structured pro-
gramming, ACM SIGPLAN Notices 8 (1973), pp. 12–26, http://www.
geocities.com/SiliconValley/Way/4748/nsd.html.

[7] Object Management Group, “UML Superstructure Specification, v2.0,”
(2005), http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[8] Object Management Group, “Object Constraint Language, v2.0,” (2006),
http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

[9] Störrle, H. and J. H. Hausmann, Towards a formal semantics for UML 2.0
activities, in: Software Engineering, SE 2005, 2005, available from http:
//www.pst.informatik.uni-muenchen.de/~stoerrle/.

93

Author Index

Alexander P., 27
Altmanninger K., 51

Braatz B., 81

Denckla B., 67

Haruhiko K., 39
Henkler S., 15
Hirsch M., 15

Mosterman PJ., 67

Reiter T., 51
Retschitzegger W., 51

Saeki M., 39
Streb J., 27

Vangheluwe H., 11

95

