
Maintaining Consistency between System Architecture
and Dynamic System Models with SysML4Modelica

Axel Reichwein

Georgia Institute of Technology,
 Atlanta

axel.reichwein@me.gatech.edu

Petra Witschel
Siemens Corporate Technology,

Munich
petra.witschel@siemens.com

Christiaan J.J. Paredis
Georgia Institute of Technology,

 Atlanta
chris.paredis@me.gatech.edu

Philipp Emanuel Stelzig

Siemens Corporate Technology,
Munich

philipp.stelzig@siemens.com

Rainer Wasgint
Siemens Corporate Technology,

Munich

Arquimedes Canedo

rainer.wasgint@siemens.com

Siemens Corporate Research,
Princeton

arquimedes.canedo@siemens.com

Anjelika Votintseva
Siemens Corporate Technology,

Munich

anjelika.votintseva@siemens.com

ABSTRACT
Nowadays many technical products include mechatronic systems
that incorporate components from multiple disciplines —
mechanical, electronic, controls and software. In model-based
design of mechatronic systems different kinds of models are used
to model various system aspects, such as the system structure or
its dynamic behavior. This often leads to a process that involves
multiple formalisms and is concerned with the coupling of and
transformation between models described in these formalisms. In
this paper, an approach based on the OMG SysML-Modelica
specification is introduced to facilitate the formal definition of
dependencies between a system architecture view described in
SysML and a continuous system dynamics view defined in
Modelica. We discuss the problem of maintaining consistency
between these two views. Taking into account the characteristics
of the modeling languages, the design workflows, and current
modeling tool capabilities, we present the advantages and
challenges of modeling the dynamic behavior completely in
SysML4Modelica followed by a transformation to Modelica. To
overcome the disadvantages, a “mixed-paradigm” approach is
proposed in which different parts of the dynamic system behavior
are modeled at different levels of abstraction with different
formalisms. Finally, an illustrative example is provided which
focuses on practical issues related to the usage of
SysML4Modelica.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Classifications-- design
languages, specialized application languages; I.6 [Simulation and
Modeling]: Model Development, Simulation Languages

General Terms
Design, Experimentations, Languages, Verification.

Keywords
Model-Based Design; Mechatronic Systems; SysML; Modelica.

1. INTRODUCTION
Mechatronic systems, from basic mobile phones to high-
performance fighter aircraft, are characterized by the integration
of mechanical, electronic, control, and software components.
Mechatronic design is a complex process due to the inherent
complexity of combining distinct engineering teams and
disciplines within short periods of time and with limited budget.
Model-based concept design is often used to allow engineers to
describe and evaluate various system aspects. Models used in
mechatronic product design are, for example, mathematical
models, geometric models, software models, system models,
control system models, multi-body system models, requirement
models and function models.

Since models have common properties and common structures, it
is necessary to maintain consistency between them. A change in
one model thus requires the update of dependent models.
Maintaining consistency among models is necessary in order to
avoid miscommunication among engineers and in order to acquire
meaningful (simulation) results. Due to the wide variety of
disciplines and modeling tools that are used in mechatronic de-
sign, there is currently no established solution that allows
engineers to efficiently and formally define dependencies between
different models. Therefore, maintaining consistency between
different models is often a manual, time-consuming, and error-
prone process.

In this paper, an approach related to maintaining consistency be-
tween a high-level system model defined in SysML and a dynamic
system model defined in Modelica is presented. The purpose of a
high-level system model is to describe system requirements, sys-
tem functions, system use cases, and the system architecture

mailto:axel.reichwein@me.gatech.edu�
mailto:petra.witschel@siemens.com�
mailto:chris.paredis@me.gatech.edu�
mailto:philipp.stelzig@siemens.com�
mailto:rainer.wasgint@siemens.com�
mailto:arquimedes.canedo@siemens.com�
mailto:anjelika.votintseva@siemens.com�

including its component structure, component behavior, and com-
ponent interactions. On the other hand, the purpose of a dynamic
system model is to describe and simulate the dynamic behavior of
a system such as a control system or a multi-body system. An
important observation is that, although the purpose of the system
architecture and dynamic system models is different, the two share
a common structure and common properties.

The Systems Modeling Language (SysML) [1] is a standardized
general-purpose modeling language to describe systems including
hardware, software, personnel and processes. Although it is still a
relatively new modeling language, it has already been used for the
description of many different systems such as satellites [2],
telescopes [3], and for product reconfiguration [4]. Many
modeling tools support SysML since it is based on the widely
used software modeling language UML [5]. The Modelica
language [6] is the most widespread tool-independent modeling
language to describe dynamic systems. Modelica is a textual
language capable of defining reusable modular components. It can
be used to describe multi-domain dynamic systems containing
mechanical, electrical, electronic, hydraulic, thermal, control and
electric power components. The Modelica language is
standardized by the Modelica Association [6] and is supported by
many commercial and open-source modeling tools. These
Modelica tools can simulate the dynamic systems described in
Modelica by automatically translating the models into
corresponding differential algebraic equations.

Using SysML profiles for representing various discipline-specific
models in SysML, and then translating these models into other
languages through model transformations has been demonstrated
in [7]. A SysML model can be composed both of the normal
system description including requirements, use cases, and
architecture as well as of the Modelica dynamic models through
the use of profiles. In order to distinguish between both, the
subset of the SysML model representing the Modelica model is
referred to as the SysML4Modelica [15] model. The
transformation of SysML4Modelica models into Modelica has, for
example, been used for the model-based design of automotive
architectures [8].

The mapping specification between SysML4Modelica and
Modelica is currently under formalization by the OMG [9].
Therefore, it is of great interest to identify the best use of it by
either modeling the dynamic behavior in SysML4Modelica, in
Modelica, or a combination of both languages. The objective of
this paper is to identify the advantages and the challenges of the
different approaches while taking into account the modeling
language characteristics, the design workflows, and the
capabilities of state-of-the-art modeling tools. Based on these
assessments and an illustrating example, we propose a workflow
to efficiently create dynamic system models in conformance with
the system architecture model.

2. RELATED WORK
Pop et al. [10] introduced a UML profile for Modelica called
ModelicaML in order to represent Modelica models in UML. This
approach allows describing Modelica models graphically in UML
diagrams and to automatically generate the corresponding Modeli-
ca code based on UML diagrams. ModelicaML has been further
investigated by Schamai et al. [11]. Similarly, Nytsch-Geusen
developed UMLH [12] to represent Modelica models in UML,
and Ji et al. [13] developed the MDRE4BR profile to support

automated verification of requirements based on a dynamic
system simulation.

The representation of Modelica models in SysML was first
introduced by Johnson et al. [14]. Shortly after, the standard-
ization of the mapping of the Modelica language into SysML with
appropriate stereotypes started at the OMG [9]. All Modelica-
specific stereotypes have been unified in a SysML4Modelica pro-
file. It is important to note that a simpler mapping between
SysML and Modelica considering only a small subset of the
Modelica language has been proposed by Vasaiely [16]. Although
this partial SysML-Modelica mapping can be very attractive for
some use cases, it only covers a very limited scope of the
Modelica language and thus cannot be used in a more professional
context.

While one of the highly used strengths of SysML is its capability
to provide traceability between different model artifacts, the integ-
ration of system requirements and dynamic system model features
can also be done in Modelica as shown in [17].

3. MODELING THE SYSTEM
ARCHITECTURE IN SYSML

Typically, the high-level system aspects including system func-
tions, requirements, and the system architecture are defined before
the detailed system dynamics. Different systems engineering pro-
cesses such as OOSEM [18] and SysMOD [19] propose guide-
lines to describe high-level system aspects in SysML. Since
SysML is a relatively new modeling language, the corresponding
systems engineering processes are also new and very few
experience reports have been published. Nevertheless, a system
engineer will typically perform the following steps:

• Define project context and goals
• Define stakeholders
• Define functions/use cases/requirements
• Define system components
• Define component interfaces and interactions
• Define analysis to be performed
• Define variation points

While the definition of the project context and goals is still done
mostly in text, the other system aspects can be expressed in
SysML. Stakeholders can be described through SysML actors.
Function trees, use cases and requirements can be represented
respectively through SysML block, use case, and requirement dia-
grams. The system components as well as their interfaces and in-
teractions can be represented through SysML block definition and
internal block diagrams. The analysis that needs to be performed
on a system can be described in SysML sequence, parametric, and
activity diagrams. In addition, test cases can be defined in SysML
for the validation of requirements. Furthermore, SysML has
language constructs to specify system variation points and specific
system variants such as association multiplicities, generalizations,
property redefinitions and instance specifications.

4. BRIDGING THE GAP BETWEEN
SYSML AND MODELICA
SysML and Modelica are two different modeling languages that
serve different purposes. However, they both share common
object-oriented modeling principles to support the encapsulation
of information in reusable model components. As a result, a
Modelica model can be represented in SysML similarly as in

Modelica. Modelica-related stereotypes can be applied to SysML
constructs to indicate their additional Modelica-specific
semantics. All Modelica-related stereotypes are grouped into the
SysML4Modelica profile. The part of the SysML model
representing a Modelica model is called a SysML4Modelica
model as shown in Figure 1.

In the context of the cooperation between the Georgia Institute of
Technology and Siemens Corporate Technology, two
implementations of the bidirectional SysML4Modelica-Modelica
transformations were developed. The first implementation attempt
was based on the QVT [20] standard for model transformations
but could not be completed due to the absence of a bug-free QVT
interpreter. The QVT implementation defined a model-to-model
transformation. Since the Modelica metamodel is not standardi-
zed, a Modelica metamodel was chosen based on the metamodel
of OpenModelica. A second Java-based prototypical
implementation was developed to also take into account graphical
model layout information. Since graphical layout information of
SysML models is not standardized, maintaining this information
requires a SysML tool-specific transformation. Therefore, our
Java-based implementation used MagicDraw as a SysML
modeling tool. The Java-based transformation was not a strict
model-to-model transformation based on metamodels but a direct
transformation between the Modelica concrete syntax and SysML.

5. MODELING SYSTEM DYNAMICS IN
SYSML4MODELICA
Some system requirements and functions are preferably validated
with a dynamic system simulation. For this purpose, the dynamic
system model can either be described in Modelica or in SysML4-
Modelica because both representations are semantically
equivalent. A dynamic system model defined in SysML4Modelica
can be automatically translated into Modelica code and vice versa.
As a result, the modeler has to decide between defining the
complete dynamic model in Modelica, in SysML4Modelica, or in
a combination of both languages. Each approach has benefits and
drawbacks. In any case, however, a SysML4Modelica model will
be used to bridge the gap between high-level systems aspects
defined in SysML and the executable dynamic system model
described in Modelica.
When developing the complete dynamic model in SysML4-
Modelica (e.g. to keep everything in one model for better
management), the following advantages and challenges should be
taken into consideration.

5.1 Advantages of Modeling Complete
System Dynamics in SysML4Modelica

5.1.1 Staying in the same environment
SysML4Modelica allows the modeler to stay in the same SysML
modeling environment when describing both the high-level
system aspects and the dynamic system behavior. A modeler then
needs to add Modelica-specific stereotypes of SysML4Modelica
profile to the SysML modeling constructs to describe a Modelica
model in SysML. A Modelica class, for example, corresponds in
SysML to the base level SysML block with a «ModelicaClass»
stereotype applied to it. SysML4Modelica parts can finally be
translated automatically into executable Modelica code.

5.1.2 Representing more graphical information
While most Modelica modeling tools support representation of
component interactions similar to SysML internal block diagrams,
SysML and thus, SysML4Modelica have other diagrams that can
be used to represent additional information. For example, SysML
block definition diagrams can describe relationships between
different component types, SysML state charts and activity
diagrams can specify the discrete and continuous behavior of
components or subsystems, and SysML parametric diagrams can
describe (Modelica) equations as well as other (combined system)
constraints. Although the current SysML4Modelica standard only
supports the representation of Modelica models with SysML
internal block and block definition diagrams, the additional
graphical SysML capabilities could eventually be used. As an
additional example, SysML requirement diagrams can specify
connections between Modelica components and the correspond-
ding requirements.

5.1.3 Setting SysML4Modelica parts as invisible
Since SysML4Modelica is not a new language but just an
extension of SysML, Modelica-related stereotypes can be masked
out by the SysML modeling tool. If the stereotypes are hidden,
only the underlying SysML modeling constructs will be shown.
This is advantageous for a system engineer who wants to gain an
overview of the system model in SysML but who is not interested
in the details that are necessary to describe an executable dynamic
system model in Modelica.

5.2 Challenges of Modeling Complete
System Dynamics in SysML4Modelica

It is important to note that the drawbacks listed in this section
relate to the practice of modeling complete system dynamics in
SysML4Modelica and not to the SysML4Modelica language
itself.

5.2.1 Different structures and abstraction levels
The degree to which the system architecture definition in SysML
can be reused to describe the SysML4Modelica model has an
impact on the modeling effort to create the dynamic system model
in SysML4Modelica. If the SysML constructs describing the sys-
tem architecture match the intended structure of the dynamic
system model in SysML4Modelica, then the SysML constructs
describing the system architecture can be reused to also describe
the dynamic system model in SysML4Modelica. In this case, the
SysML4Modelica model can be defined by only adding SysML4-
Modelica stereotypes to the existing SysML constructs.

However, the component decomposition of the system archi-
tecture will most likely not match the component decomposition

SysML

Requirements Functions

Figure 1. Relationship between Models in SysML,
SysML4Modelica, and Modelica.

System Architecture
(Dynamics)

System
Architecture
(Structure)

SysML4
Modelica Modelica

of the dynamic model needed for simulation. While the com-
ponent decomposition of the system architecture is intended to
represent the main system components on a level of detail purely
based on the modeler’s preference, the component decomposition
of the SysML4Modelica model will be motivated by the reuse of
existing Modelica components and by the need to define a
dynamic system model that can be simulated without errors. The
SysML4Modelica model will, for example, be composed of more
modeling constructs than the system architecture model and of
additional SysML constraints and connectors related to Modelica
equations and algorithms. Since in this case the structure of the
SysML4Modelica model is likely to be different than the system
architecture defined in SysML, the SysML4Modelica model will
have to be defined through new base level SysML constructs
requiring additional modeling effort.

Another drawback of combining abstraction levels is that the de-
velopment of the detailed dynamics model requires different skills
than high-level system architecture development. For example, a
system architect knowing SysML may not be able to provide the
complete and correct information for a detailed dynamic model.
Similarly, a Modelica simulation expert may not be fluent in
SysML. Nevertheless, because mapping of SysML constructs into
Modelica constructs is often a one-to-many mapping, the modeler
has to decide which SysML4Modelica stereotype has to be
applied to a SysML construct. For example, a SysML block could
either be a «ModelicaClass» or a «ModelicaBlock». A
«ModelicaPort» stereotype could for example be uniquely applied
to a SysML port. However, users would still be required to
manually complete the definition of the Modelica port through the
properties of the «ModelicaPort» stereotype.

5.2.2 Debugging with graphical visualization
An important aspect to consider when modeling a dynamic system
model is debugging. The definition of a dynamic system model
often contains errors by being either under- or over-determined, or
by having wrong values. Most SysML modeling tools do not
provide off-the-shelf checking and debugging capabilities as
Modelica modeling tools do. Therefore, the only way to
efficiently track down and resolve errors in a SysML4Modelica
model is to translate it into the corresponding Modelica model
and to open and simulate it with a Modelica modeling tool.
Furthermore, the graphical visualization of simulation results is an
important feature for efficient analysis. The simulation results
shown as graphs allow quick and simple validation of a dynamic
system model. Most Modelica modeling tools provide plotting
capabilities in order to easily see the value of the system states
during a simulation run. This information is important as several
system parameters are typically fine-tuned during such analysis.

5.2.3 Iterative development
In general, it is more efficient to resolve bugs in a dynamic system
model iteratively (for example by going through several small and
manageable modeling and testing phases) rather than sequentially
by modeling the entire model and then testing the entire model
with all its errors. This means that a modeler who wants to follow
the efficient iterative development method and to define a
dynamic system model in SysML4Modelica would have to
translate it into Modelica, test it with a Modelica modeling tool,
and adapt the model in SysML4Modelica in many iterations.
Having to often switch between two different dynamic system
representations and two different modeling tools to define and test
a dynamic system model is cumbersome.

5.3 Mixed-Paradigm Approach
To overcome the identified challenges while taking advantage of
the identified benefits, we propose a “mixed-paradigm” approach
whereby instead of exclusively using SysML4Modelica, we use a
combination of SysML, SysML4Modelica, and Modelica for the
different phases of mechatronic design. In the proposed workflow,
only the high-level dynamic structure and interfaces are defined in
SysML4Modelica and the detailed dynamic behavior is defined in
Modelica. These are the proposed steps:

1. Definition of high-level system aspects including
requirements, use cases and functions in SysML

2. Definition of the high-level structure of system architecture
in SysML. Definition of the high-level dynamic system
model including components, component interfaces and in-
teractions in SysML

3. (Partial) definition of dynamic models in SysML4Modelica
for components intended to be implemented in Modelica.

4. Definition of dependencies between the dynamic system
model components and the structure of the architecture
model in SysML

5. Translation of the provided SysML4Modelica subsystem
into Modelica

6. Completion of the dynamic model components in Modelica
by adding the missing behavior, followed by simulations,
and the analysis of simulation results

7. Translation of the complete dynamic system model from
Modelica into SysML4Modelica

8. Definition of additional dependencies between dynamic
system model components and high-level system aspects in
SysML, among others: traces from the detailed dynamic
model to the requirements, test cases etc.

Figure 2 shows how the proposed approach can be applied to the
model of the electrical vehicle (eCar) described in [8]. The
different steps and experienced benefits are explained below in
more detail.

Step #1 and Step #2

SysML is used to define high-level system aspects such as
requirements, functions, use cases (Step #1), and the system
architecture (Step #2). Requirements related to the eCar may, for
example, impose a remaining minimum battery state of charge
after a specified driving cycle. The system architecture of the eCar
is composed of the main components including the driver, electric
motor, cruise control, environment, and others.

Since modelers like to use their language of preference, it is very
likely that components of a large dynamic system model will be
defined in different languages. Many modeling or programming
languages including Modelica, Simulink, FORTRAN, and C can
be used to describe various components of a large dynamic system
model. SysML can be used as a neutral representation for defining
the structure of a large dynamic system model whose components
are intended to be implemented in different languages. In this
case, interfaces of components need to be clearly defined in order
to be compatible with each other. Since SysML is language- and
vendor-neutral, it can be used to define interfaces and interactions
of dynamic system model components. Thus, the SysML model
can be seen as a contract which various component modelers
need to be in compliance with in order to ensure component
compatibility.

Step # 3

If some dynamic system model components are intended to be
transformed to Modelica, they are distinguished by applying
SysML4Modelica stereotypes. In this case, the definition of black-
box components is not as error-prone as the definition of the
internal component behavior in SysML4Modelica. Instead, the
detailed internal component behavior can be specified in a
Modelica environment and the definition of interfaces and inter-
actions between components can be defined in SysML4Modelica.

Step #4

An important advantage of defining the structure of a dynamic
system model in SysML/SysML4Modelica is the fact that
dependencies between the system architecture model and the
dynamic system model can be formally defined in SysML (Step
#4). Both models will share common properties as well as, to a
certain degree, a common structure. For example, the number of
moveable system components defined in the system architecture
will be reflected in the dynamic system model. Similarly, the
inertial properties of the moveable system components such as the
mass and moment of inertia defined in the system architecture will
also be defined redundantly in the dynamic system model.
Consequently, for Step #4 it is important to formally define
interfaces between all components and the dependencies between
them in order to enable an efficient and unambiguous
communication between system engineers and dynamic system
specialists. A system engineer can then easily see how a change in
the system architecture will affect the dynamic system model, and
a dynamic system specialist can trace back features of the dynamic
system model to the system architecture aspects such as
requirements, test cases, and system structure. In addition, the
formally defined dependencies can also support the automatic
propagation of values from one model to the other in order to
efficiently ensure automatic model consistency. The dependencies
can be expressed in SysML through various SysML concepts
including allocation, generalization, redefinition, association
blocks, and parametric diagrams. For example, a SysML
constraint can express the equality condition between the mass
property of the vehicle situated redundantly in the system
architecture and in the dynamic system model.

Step #5

As a next step, partially defined components in SysML4Modelica
are automatically translated into Modelica code. This ensures that
the component interfaces defined in SysML4Modelica are
identical with the ones used in Modelica and it avoids the time-
consuming and error-prone manual redefinition of component
interfaces in Modelica. Moreover, problems related to different
structures and abstraction levels (see Section 5.2.1) can be
avoided to a certain degree.

Step #6, Step #7 and Step #8

The definition of the dynamic system model components can be
completed in a Modelica modeling environment by adding more
details (Step #6). This supports the efficient debugging
capabilities of a Modelica modeling environment and mitigates
the problem of the lack of debugging in SysML (see Section
5.2.2).

Use cases

Function Trees

System Architecture

Dynamic System Model
in SysML4Modelica

Dynamic System Model
in Modelica

Sy
sM

L
M

od
el

in
g

E
nv

ir
on

m
en

t
M

od
ei

ca
M

od
el

in
g

E
nv

ir
on

m
en

t

1

6

75

Requirements

2

4 8

3

Figure 2. Mixed-paradigm approach for mechatronic design in
SysML, SysML4Modelica, and Modelica

3

2

In addition, the drawbacks of an interactive development
approach (see Section 5.2.3) are diminished. The fully defined
and analyzed dynamic system model can then be translated back
into SysML4Modelica (Step #7) in order to allow the definition of
additional dependencies between the dynamic system model and
other system aspects such as requirements, functions, and system
architecture (Step #8).

6. CONCLUSION
Traditionally, systems engineering aspects and system dynamics
are described in different modeling languages e.g. SysML and
Modelica. As a result, the system architecture model is decoupled
from the dynamic system model and the risk of inconsistencies is
high. A model that is not up to date may increase the likelihood of
miscommunication among engineers and may lead to wrong
design decisions. In this paper, we present how SysML4Modelica
can be used to efficiently bridge the gap between high-level
system aspects defined in SysML and dynamic system models
defined in Modelica. An analysis of the advantages and challenges
of modeling a dynamic system model entirely in SysML4-
Modelica has been presented. In this case the advantages of
SysML4Modelica are its capabilities for extended graphical
representation and the traceability between all aspects defined in
SysML. On the other hand, the main disadvantage when
developing the complete dynamics in SysML4Modelica is the
combination of the abstraction levels that makes its development
unmanageable. To overcome this and other problems, our recent
experiences show that it is more efficient to define the detailed
dynamic system model in Modelica instead of SysML4Modelica.
Taking into account both the modeling effort and the need to
maintain consistency between high-level system architecture and a
dynamic system model, a mixed-paradigm approach combining
SysML, SysML4Modelica and Modelica has been proposed. Our
future work will be focused on a better integration of
SysML4Modelica with SysML and Modelica to enable the
application of this technology in large industrial projects.

7. ACKNOWLEDGMENTS
This work has been funded by Siemens Corporate Technology in
the context of the Siemens internal research project LHP MDE
(Light House Project - Mechatronic Design). The authors would
like to thank Wladimir Schamai, Adeel Asghar, Adrian Pop and
Peter Fritzson for providing support for OpenModelica as well as
Roland Samlaus for sharing with us his XText-based Modelica
grammar.

8. REFERENCES
[1] OMG, OMG Systems Modeling Language (OMG SysML)

Version 1.2, 2010: http://www.omg.org/spec/SysML/1.2/.
[2] Spangelo, S.C., et al., Applying Model Based Systems

Engineering (MBSE) to a standard CubeSat, in IEEE
Aerospace Conference, 2012

[3] Karban, R., et al., Exploring Model Based Engineering for
Large Telescopes - Getting started with descriptive models,
in SPIE Astronomical Telescopes and Instrumentation, 2008.

[4] Wu, D., et al., SysML-based design chain information
modeling for variety management in production
reconfiguration. J Intell Manuf, 2011: p. 1-22.

[5] OMG, OMG Unified Modeling Language (OMG UML),
Superstructure Version 2.4.1, 2011:
http://www.omg.org/spec/UML/2.4.1/.

[6] Modelica Association, Modelica Specification, version 3.2,
2010: https://modelica.org/association.

[7] Shah, A.A., D. Schaefer, and C.J.J. Paredis, Enabling Multi-
View Modeling With SysML Profiles and Model
Transformations, in International Conference on Product
Lifecycle Management, 2009.

[8] Votintseva, A., P. Witschel, and A. Goedecke, Analysis of a
Complex System for Electrical Mobility Using a Model-
Based Engineering Approach Focusing on Simulation.
Procedia Computer Science, 2011. 6: p. 57-62.

[9] OMG, SysML-Modelica Transformation (SyM), V1.0, Beta
3, 2012, http://www.omg.org/spec/SyM/Current

[10] Pop, A., D. Akhvlediani, and P. Fritzson, Towards Unified
Systems Modeling with the ModelicaML UML Profile, in
International Workshop on Equation-Based Object-Oriented
Languages and Tools. 2007.

[11] Schamai, W., et al., Towards Unified System Modeling and
Simulation with ModelicaML: Modeling of Executable
Behavior Using Graphical Notations, in 7th Modelica
Conference, 2009.

[12] Nytsch-Geusen, C., The use of the UML within the
modelling process of Modelica-models, in Proceedings of
EOOLT, 2007.

[13] Ji, H., Lenord O., and D. Schramm, A Model Driven
Approach for Requirements Engineering of Industrial
Automation Systems, in Proceedings of the 4th International
Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, Zurich, Switzerland, 2011.

[14] Johnson, T., C.J.J. Paredis, and R. Burkhart, Integrating
models and simulations of continuous dynamics into SysML,
in Modelica Conference, 2008.

[15] Paredis C.J.J., et al., An Overview of the SysML-Modelica
Transformation Specification, in INCOSE International
Symposium, 2010.

[16] Vasaiely, P., Interactive Simulation of SysML Models using
Modelica, 2009, Hamburg University of Applied Sciences.

[17] Plateaux, R., et al., Integrated design methodology of a
mechatronic system. Mécanique & Industries, 2010. 11: p.
401-406.

[18] Friedenthal S., Moore A., and Steiner R., A Practical Guide
to SysML: The Systems Modeling Language, 2009: Morgan
Kaufmann.

[19] Weilkiens, T., Systems Engineering with SysML/UML:
Modeling, Analysis, Design, 2008: Morgan Kaufmann

[20] OMG, Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification, V1.1, January 2011,
http://www.omg.org/spec/QVT/Current

http://www.omg.org/spec/UML/2.4.1/�
https://modelica.org/association�

	Maintaining Consistency between System Architecture and Dynamic System Models with SysML4Modelica
	1. INTRODUCTION
	2. RELATED WORK
	3. MODELING THE SYSTEM ARCHITECTURE IN SYSML
	4. BRIDGING THE GAP BETWEEN SYSML AND MODELICA
	5. MODELING SYSTEM DYNAMICS IN SYSML4MODELICA
	5.1 Advantages of Modeling Complete System Dynamics in SysML4Modelica
	5.1.1 Staying in the same environment
	5.1.2 Representing more graphical information
	5.1.3 Setting SysML4Modelica parts as invisible

	5.2 Challenges of Modeling Complete System Dynamics in SysML4Modelica
	5.2.1 Different structures and abstraction levels
	5.2.2 Debugging with graphical visualization
	5.2.3 Iterative development

	5.3 Mixed-Paradigm Approach

	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

