Model-based specification, analysis and synthesis of
servo controllers for lithoscanners

Ramon R.H. Schiffelers ’

Wilbert Alberts

Jeroen P M. Voeten f

ASML ASML Eindhoven University of
De Run 6501 De Run 6501 Technology
5504 DR Veldhoven, The 5504 DR Veldhoven, The Den Dolech 2
Netherlands Netherlands 5600 MB Eindhoven, The

r.r.h.schiffelers@tue.nl

ABSTRACT

ASML is the world’s leading provider of complex lithogra-
phy systems for the semiconductor industry. Such systems
consist of numerous servo control systems. To design such
control systems, a multi-disciplinary model-based develop-
ment environment has been developed. It is based on a set
of domain specific languages (DSLs) describing A) the trans-
ducers and control logic, i.e. the application; B) the relevant
subset of the hardware, i.e. the platform; and C) the map-
ping of the application on the platform. Models specified
with these DSLs are used for different types of analysis, for
example load prediction of computing nodes and networks
between them. Furthermore, the behavioral specification
present in the models is transformed into efficient C code
that is executed in a hard real-time setting. Finally, the
models are used during startup of a twinscanner to initialize
the servo controllers and their execution platforms, and to
schedule the control blocks on the computing nodes.

1. INTRODUCTION

ASML is the world’s leading provider of complex lithography
systems (Figure 1) for the semiconductor industry. Such
systems consist of numerous servo control systems to control,
for instance, the positioning of a 15 kg wafer positioning
module in six degrees of freedom with nanometer accuracy
at acceleration speeds exceeding 110 G. This results in tight
hard real-time requirements on their implementation.

Within ASML, these servo control systems are developed ac-
cording to the Control Architecture Reference Model (CARM)
that consists of different layers to describe the control logic
and the execution platform of a lithoscanner at different lev-
els of abstraction.

To manage the increasing complexity of control applications,
and to deal with hybrid computation platforms, analysis is
required early in the design process. Furthermore, to deal
with high demands on time-to-market and quality of the
designs, a seamless parallel multi-disciplinary development
process is used/needed, combined with deterministic, auto-
matic synthesis techniques.

*Dr. Schiffelers also holds a position as assistant professor
at the Eindhoven University of Technology

TDr. Voeten also holds a position as Research Fellow at the
Embedded Systems Institute (ESI).

wilbert.alberts@asml.com

. Netherlands
j-.p-m.voeten@tue.nl

g

Figure 1: ASML NXE Lithoscanner

The core of CARM relies on a set of domain-specific lan-
guages (DSLs) that formalize in a coherent, consistent and
unambiguous way the domain concepts governed by the dif-
ferent CARM layers. The domain specificity of the lan-
guages allows a tight fit with the established terms, concepts
and needs for each design discipline. Models specified with
these DSLs are the first-class citizens (pivot) in the design
process consisting of specification, analysis, and synthesis
phases:

e Specification By means of a multi-disciplinary inte-
grated development environment (IDE), formal mod-
els are developed that describe A) the control logic in
terms of (interconnected) servo networks and trans-
ducers (sensors and actuators), typically specified by
mechatronic engineers; B) the (hybrid) computation
platform in terms of single/multi-core processors as
well as accelerator support (e.g. FPGASs), typically
specified by electrical engineers; C) the mapping how
the control logic is deployed and scheduled on the com-
putation platform, typically specified by embedded soft-
ware engineers. Incorporating different levels of ab-
straction into the DSL framework enables the disen-
tanglement between the various pieces of information
that originate in the several disciplines, reducing the
complexity of the (parallel) design process. The IDE
provides the design engineers with feedback on the
models early in the design process improving quality
of the designs.

e Analysis Analysis models are used as input for key
decisions for which it has to be proven that a design
will work. Furthermore, verification of the designs re-
duces the risk on errors during integration, or elimi-
nates the integration effort altogether. More specifi-
cally, in CARM, A) models are transformed to formal
specification languages such as data flow languages to
analyze their correctness (e.g. no deadlock); B) models
are transformed automatically into formal, executable
(simulation) models to verify upfront whether the tim-
ing requirements are met and to predict the effect of
control loop changes and/or platform changes.

o Synthesis The same models used at design time are
used A) during the build by code generators to gen-
erate software that is executed on the lithoscanners;
B) during start-up of a lithoscanner, to initialize the
servo controllers, to configure the computation plat-
forms, and to schedule control blocks over computing
nodes.

The main contribution of this paper is that we show that
DSLs, including their graphical and textual concrete syn-
taxis, and text-to-model (T2M), model-to-model (M2M),
and model-to-text (M2T) transformations allow to define
an integrated design environment to design, analyse and
synthesize control systems. The industrial relevance of this
work is underlined by its usage within ASML to develop
hard real-time control systems for lithoscanners.

The outline of this paper is as follows. The domain of in-
terest and CARM are described in Section 2. Section 3
describes the developed DSLs, their relations, and the mod-
eling environment. Several types of analysis, based on these
models, are described in Section 4. In Section 5, it is out-
lined how the models are used during the several synthesis
phases. Related work is discussed in Section 6. Finally,
we conclude with some experiences and directions for future
work.

2. SERVO CONTROL DOMAIN AND CARM

2.1 Servo control domain

Control theory is defined as an interdisciplinary branch of
engineering and mathematics that deals with the behavior
of dynamic systems. The external input of a system is called
the reference. When one or more output variables of a sys-
tem need to follow a certain reference over time, a controller
manipulates the inputs to a system to obtain the desired
effect on the output of the system.

A typical application of control theory is a cruise control
system. Such system provides the ability to set and maintain
the speed of car. The desired speed, as set by the driver, is
the system’s reference. The cruise control system actuates
the throttle position in such way that the actual speed, as
measured by the speed sensor, matches the reference as good
as possible. This form of control is also called closed loop
control, or servo control.

2.2 CARM

CARM divides the controller designs in 4 layers: application,
process control, transducers and connectivity.

The application layer is responsible for providing the refer-
ence and the actions of the driver, like setting the desired
speed or turning the cruise control off. The transducer layer
implements the behavior of sensors and actuators. In case
the cruise control system is implemented in a digital way,
this layer also needs to take care of measuring the speed of
the car and converting it in a number (in SI units). The pro-
cess control layer receives (the converted) sensor information
and compares it to the reference. Based on the difference,
new settings for the actuators are calculated. As the con-
troller and the transducers tend to be deployed on different
(computing) nodes, a connectivity layer is used to transport
signals from the controller to the (physical) transducers and
vice versa. In the cruise control system, the connectivity
layer should ensure that the output of the speed sensor is
correctly provided to the control system. In more complex
systems, this might require deployment of physically sepa-
rated nodes that communicate with each other via a net-
work.

3. SPECIFICATION

The core of CARM relies on a set of DSLs. In Section 3.1,
we describe the design principles used to design the DSLs.
Given the size of the languages, their contents can only be
discussed very briefly in this paper. The developed multi-
disciplinary IDE is described in Section 3.2.

3.1 Domain Specific Languages

A domain specific language is defined by means of a domain
model (metamodel) and accompanying constraints. The
domain model represents domain concepts (entities) and
their relationships. The domain models are described us-
ing (Ecore) class diagrams ([1]), where classifiers represent
concepts, and associations represent relationships. Another
advantage of such explicit domain model is its formality.
Furthermore, during the design of a domain model, it is not
necessary to deal with concrete syntax. After the definition
of the domain model, one or more concrete textual and/or
a graphical syntax(es) for the language can be defined.

For a language, many different metamodels can be defined.
For example, a metamodel representing the abstract syntax
tree (AST), which resembles a BNF (Backus-Naur Form)
language specification, can be defined using containment re-
lations only. An instance of such a metamodel is a tree
of language elements, and additional scope (reference) re-
solving is required to map identifiers to objects. A meta-
model can also be developed using (non-containment) rela-
tions/references, resulting in a graph, for which reference
resolving is not needed.

It is possible to include static type information for variables
and omit type information for the operators and value nodes
of expression trees. In this case, additional type computing
is required in order to determine whether expressions are
type-correct. Alternatively, type information on all nodes of
expression trees can be included.

In the CARM DSL framework, it was chosen to design the
metamodels of languages such that instances of these meta-
models are fully statically typed graphs. In this way, A)
transformations do not have to deal with issues related to
type computing and scope resolving; B) transformations

only have to deal with mappings between concepts; and C)
the metamodel abstracts away from parser-related elements
that are often contained in language definitions.

The class diagram of a language contains static semantic
constraints such as every Servogroup contains at least one
control block. Static semantic constraints such as within a
servogroup, the names of the control blocks should be unique
cannot be expressed using class diagrams. In order to de-
fine such static semantic constraints, the Object Constraint
Language (OCL) (|2]) is used.

Figure 2 shows the developed DSLs organized according to
the Y-chart paradigm [3].

IS

<]

| PGAPP H PGSG H PGWB| =
o

‘ Transducer _&
<

Deployment o

a

Q.

©

Schedule =

‘ Logical Platform

4Platform

’ Physical Platform

Figure 2: CARM Domain Specific Languages

The Application level describes the (control) logic; the Plat-
form level provides the means to implement the logic; and
the Mapping level maps each element from the Application
level to an element in the Platform level. Within these Y-
chart levels, different levels of abstraction present in the
DSL framework reduce the complexity (entanglement) of the
multi-disciplinary parallel design processes.

3.1.1 Application level

The application level contains the description of the con-
trol application. It consists of the control logic described
by means of the PGAPP, PGSG, and PGWB languages,
and the description of the transducers in the transducer lan-
guage. The PGAPP defines a network of servogroups and
transducer groups. Both transducer and servogroups con-
tain (data) ports. Information exchange between them can
be established by means of connecting these dataports. Ser-
vogroups consist of interconnected control blocks. Control
blocks contain input and output (data) ports, as well as the
behavior of the block in terms of input/output relations,
specified by imperative statements and expressions over (in-
ternal state) variables, dataports, and values. As mentioned
before, the languages are strongly typed. Networks of servo
and transducer groups are defined in the PGAPP language,
servogroups in the PGSG language, control blocks in the
PGWB language and transducers in the Transducer lan-
guage. By means of the transducer language, electrical and
mechanical transducers can be defined. Complex transduc-
ers can be composed of multiple (connected) transducers,
resulting in transducer groups.

3.1.2 Platform level

In the platform level, the execution platform of the lithoscan-
ners is described. It consists of 3 domain-specific languages.

The physical platform language contains a description of (a
subset of) the hardware and their physical connections as
present in the lithoscanners. Typical concepts are (single
and multi-core) HPPCs (High Performance Process Con-
trollers), IOBoards (input-output boards), electrical and me-
chanical transducers, network switches and connectivity, and
racks containing these components. A model in the physi-
cal platform language represents a set of possible platforms,
since it does not contain the configuration data of the hard-
ware. The configuration of a particular platform from this
set is described by means of configuration data in the plat-
form mapping language. Physical limitations of the hard-
ware, such as for instance the maximum frequency at which
a IOBoard can acquire sensor data are also contained in
this language. The logical platform language abstracts from
the physical (properties) of the hardware (location, IOboard
types, HPPC processor types, network connections etc.).
Concepts contained in this language are Worker (entity that
can perform computations, abstracting from the real com-
puting hardware), ProcessingUnit (abstracting from proces-
sor or core), IOWorker (abstracting from IOBoard type,
and the location of Electrical and Mechanical TRansduc-
ers (ETRs, MTRs)), and Channel (using for data commu-
nication between nodes, abstracting from network type and
topology). The platform mapping language contains the con-
figuration data of the physical platform at hand, as well
as the mapping from logical platform elements to physical
platform elements by defining directed associations between
them. Example of some mappings are: Worker(s) to HPPC,
Board to IOBoard(s), and Channel to Network elements.
An example of configuration data for the physical platform
is the information at which rate the IOBoards are triggered
to send (sensor) data. This configuration data depends on
the application that has to be executed as well as the phys-
ical limitations of the hardware.

3.1.3 Mapping level

The mapping level describes the mapping of elements from
the control application language to elements from the logical
platform language.

The Deployment language contains associations to the con-
trol application and the logical platform language. Some ex-
amples of mappings are servoGroup to Worker, controlBlock
to ProccessingUnit, and DataConnection to Channel. After
scheduling, all atomic application elements (controlBlocks)
should be mapped to atomic platform elements (processin-
gUnits). Furthermore, the control blocks should be stati-
cally ordered respecting the data dependencies present in
the servogroup model. This information is captured in the
Schedule language. More information regarding the deploy-
ment and scheduling is given in Section 4.

3.2 Multi-disciplinary IDE

The design of control systems requires parallel development
of mechatronic engineers, electronic engineers, and software
engineers. Traditionally, this design process suffers from a
complex environment that spans these different disciplines
and dedicated tools that are loosely coupled with each other

based on conventions instead of formal specifications and re-
lations between them. This leads to errors resulting from
disobeying these conventions or even not knowing about
them until the moment the subsystems are integrated. The
developed multi-disciplinary IDE provides means to analyze
and validate designs early in the design process, before in-
tegrating them and even before constructing them physi-
cally. In addition, it facilitates efficient construction of the
associated software components that are executed on the
lithoscanners. The IDE is based on OMG [2] standards, such
as EMOF, and OCL for the definition of the domain spe-
cific languages, QVTo for model transformations, and M2T
for model-to-text transformations. Regarding implementa-
tion technology, the Eclipse modeling framework (EMF) [1],
QVTo [4], and Acceleo [5] are used, respectively. Depending
on the DSL, textual and/or graphical concrete syntax(es)
and associated editors are developed. For textual editors,
EMFText and Xtext are used. Graphical editors are de-
veloped using Eclipse GMF [6]. Depending on the models,
different persistence formats can be choosen: XML for easy
post-processing with non-EMF tools, binary for fast pro-
cessing of large models, and encrypted XMI for confiden-
tial models. The IDE supports the development process by
providing means to specify the behavior of individual pro-
cess control blocks up to the complete specification of a full
CARM model stack. A textual editor is provided that is used
to specify and generate new process control blocks. A graph-
ical editor is provided that enables specification of complete
ServoGroups. A similar editor can be used to group a selec-
tion of ServoGroups into a CARM application. In addition,
editors exist that provide means to specify the execution
platform at various levels of abstraction. This enables map-
ping the application on a conventional HPPC single core
based computation platform but the application can also be
mapped on a multicore or, in the future, even an FPGA-
based platform. The IDE provides means to validate the
application against timing and processor load constraints
which avoids late detection of such problems during integra-
tion. By using this, and only this, framework, the following
advantages are obtained: 1) consistency within the frame-
work which increases usability; 2) optimized development
effort for creation of the IDE; 3) optimized data exchange
by using a single persistency mechanism. This results in a
development environment that is efficient for the users as
well for the developers.

4. ANALYSIS

A wafer scanner contains a large number of servo control sys-
tems. These systems are specified with the DSLs depicted
in Figure 2. Servo control systems consist of control ap-
plications that are mapped onto an execution platform, as
depicted in Figure 3. Control applications read values from
sensors, compute mathematical functions specified in control
blocks, and send results to actuators. In Figure 3, only a sin-
gle application with a few functions, sensors and actuators
is shown, but wafer scanners have hundreds of applications,
each with hundreds of control blocks, sensors and actuators
and this complexity grows with each new generation of ma-
chines. To obtain the required machine performance, appli-
cations have to run at high rates and have to satisfy strin-
gent latency requirements between sensors and actuators.
For this purpose a lot of computational power is needed,
which is offered by multi-processor platforms consisting of

R
Control

application
. .
/ \\\ T — Mapping
1
. \ N
Processor l Processor
Execufion

platform

Figure 3: Servo control application mapped on exe-
cution platform.

5 Transformation 1: Construct block
7 ncy grapn
a
£ BlockDep_Graph
Deploy <2 I
a
a
TR «
e =
Transformation 2
| Logical Platform

‘ Compute schedule

| Physical Platform

Figure 4: Model transformations for schedulings.

tens of general purpose (multi-core) processors communi-
cating through low-latency packet-switched communication
networks.

The mapping layer in our DSL framework specifies for each
function on what processor it is deployed. In general, a single
processor executes more than one control block and hence
the order in which processors execute these functions, i.e.
the schedule, is also specified in the mapping layer. Cur-
rently developers have to specify the deployment informa-
tion by hand. Consequently a scheduling algorithm tries to
compute a schedule for each processor in such a way that the
latency requirements of the application are met. Whether
the scheduler is able to discover a feasible schedule, heavily
depends on the deployment choices of developer. To support
the developer making appropriate choices, a detailed timing
analysis can be performed to explore alternative solutions.
In the next subsections scheduling and detailed timing anal-
ysis are explained in more detail.

4.1 Scheduling

The computation of a schedule is based on the information
in the models conforming to our DSL framework. As a first
step, essential scheduling information is extracted from the
application and mapping DSLs. This is done by a model-to-
model transformation that constructs a block dependency
graph, see Figure 4. The dependency graph specifies control
blocks and their dependencies. Latency requirements of the
application are transformed into corresponding deadlines of
blocks. In addition, a block is aware of the processor it is
deployed on as well as its execution time.

peu Mevgmne Sepch Bt B ke by
L8 a- - - - =1 ([i Repo

‘SEr\fagmupwn:l h]mkexamrﬂmfme; & “srepasPasonsii 58] bl
— Visualization of schedule |
.1

S ==

Dapswdﬁmyg&’aph of contral blotks
: n see® o .\ Q
" -p-__._ S.00000

—

[_S—_SS—

Figure 5: Scheduling process visualized in the IDE

The essential information in the dependency graph is used
in a second step to compute schedules for each processor
resource in the platform. These schedules complete the re-
quired information in the DSL mapping layer to carry out
a detailed timing analysis. This process is supported by the
IDE, see Figure 5.

4.2 Detailed timing analysis

Before a schedule can be computed, a lot of configuration
information is detailed in the DSLs. This information in-
cludes the platform configuration (the number of proces-
sors, the topology of the switched interconnects, the settings
of synchronization timers) and the deployment. To sup-
port developers to optimally configure the system, the tim-
ing impact of alternative configuration has to be analyzed.
Where the scheduling DSL abstracts from detailed platform
information (such as communication contention and jitter
and timer settings), this information is fully taken into ac-
count when performing the detailed timing analysis. For
this purpose, the DSLs are transformed into an executable
model formalized in the POOSL language [7]. The result-
ing executable model follows the modularization as dictated
by the Y-chart and formalizes the total system in terms
of (stochastically) timed communicating parallel processes.
During simulation, application-level timing requirements are
automatically checked. Other properties of interest, such
as processor loads, the loads on communication switches,
timing averages and jitter are deduced as well. Next to a
simulation-based analysis, an exhaustive dataflow analysis
allows the detection of deadlocks.

5. SYNTHESIS

Currently, models are used for synthesis for two different
purposes. Firstly, models are transformed into implemen-
tation code during development. In the CARM framework,
specifications of control blocks are transformed into imple-
mentations expressed in the C programming language. Sec-
ondly, during startup, models are processed to generate the
schedule for the control blocks (Section 4.1). Both cases are
handled by applying text to model (T2M), model to model
(M2M) and model to text (M2T) transformations. Based on
previous experiences during the development of the Compo-
sitional Interchange Format [8], [9], transformations consist
of many small transformations, each with their own con-
cern, which can be composed into complete tool chains. In

the next subsections, code generation and scheduling are ex-
plained in more detail.

5.1 Code generation

The block code generator is responsible for translating a
block specification, made by mechatronics developers, into
a set of C source files that can be compiled and added to
the software release used during installation on lithoscan-
ners. This code is executed in a hard-real-time environment,
at rates of 10 kHz. An execution platform has been realized
that provides a number of facilities like system startup, inter
CPU communication, timing, diagnostics etc. The C code
generated from a block specification is plugged into this plat-
form. The architecture of the block generator adheres to the
pipeline design pattern. Starting from the initial specifica-
tion, information is added and modified until sufficient detail
is achieved that generation of the implementation code has
become a trivial task. Using an automated process of gener-
ating block implementations has a number of advantages: In
hand crafted implementations, the way certain problems are
implemented, vary as a result of knowledge and preference of
the individual developers. The use of the generator results
in uniform solutions to these problems. Various implemen-
tations (of the same problem) now can easily be compared
with each other resulting in selection of the most efficient
one. Sometimes, features are added to the execution plat-
form. In case of cross cutting features, all block implementa-
tions need to be changed. Utilization of the block generator
reduces the required effort for such refactorizations. Instead
of having to change all block implementations manually, only
the model to model transformations and the code generation
templates need to be changed. After that, refactoring can be
concluded by regenerating all implementations. The effort
needed to create a new block implementation is also reduced
by utilization of the code generator. For a very simple block
that sums up the values on its inputs and puts it on its out-
put, the following metrics have been obtained. Specification
of this block using PGWB consists of 72 lines. The gener-
ated code boils down to 597 lines of C code. As a result,
the time needed to create the implementation has been re-
duced from multiple days into a couple of minutes. Note
that this excludes the time needed to create the block spec-
ification itself. Creation of the block specification is always
needed, regardless the fact whether the implementation is
hand crafted or produced by a generator.

5.2 Scheduling on the lithoscanners

There is a strong correlation between models used during
analysis and models used for synthesis. This correlation ori-
gins from the fact that the system, described in the analysis
phase, will be constructed if the results of the analysis are
satisfactory. Note that analysis models can be more ab-
stract, in case the required analysis accuracy is low, but
can also be more detailed when for instance processor cache
effects need to be investigated. A similar correlation is iden-
tified for the determination of the computation order of the
blocks in the control network. During analysis, a scheduling
algorithm is used to determine an optimal calculation order
that satisfies the timing requirements. During startup, the
scheduling algorithm is run again and the results are directly
applied in the running system. In principle, no need should
exist to execute this algorithm again as the results should
not be different. However during integration, partially as-

sembled systems are initialized whose configuration has not
been considered during analysis time. Also for these par-
tial systems, a suitable calculation order is required, thus
scheduling algorithm is run during initialization time.

6. RELATED WORK

We have strived for a development environment that: 1) al-
lows the domain to be expressed concisely in the way ASML
developers perceive it; 2) offers the necessary analysis and
synthesis support that scale to the complexity of our sys-
tems; and 3) is extendible and open to interact with other
modules in our system (e.g. such as supervisory control
modules). In our vision, to simultaneously address these
goals the syntactic (and static semantic) facilities to specify
the domain should be separated from the underlying seman-
tic models. The reason is that multiple of such semantic
models are required, dependent on the specific analysis or
synthesis task. E.g. the semantic model for scalable schedul-
ing and proving absence of deadlock in our application is
Synchronous Data Flow (SDF) [10]. For detailed stochastic
simulation, on the other hand, the basis is the Segala model
of probabilistic timed transition systems [11]. Our environ-
ment is designed in such a way that it can be coupled to the
necessary semantic models and can be extended with addi-
tional ones if needed. At the same time it offers the proper
syntactic support that allows developers to express concisely
their domain, and nothing but their domain. While study-
ing literature, we found many integrated modeling environ-
ments, but none of them sufficiently fitted our purpose. For
instance, the standard environment Simulink [12] to model
and analyze control systems, has no support to express our
execution platforms. The TrueTime suite [13] does have
such facilities, but requires one to encode platform informa-
tion in low-level primitives. In addition TrueTime has no
support to schedule applications on the platform. Schedul-
ing is supported in an encompassing tool chain [14] but the
underlying semantic model of this chain is TTA, while our
platforms are based on a data-flow paradigm.

7. CONCLUSIONS

In this paper, we described the CARM framework consisting
of DSLs and a multi-disciplinary development environment
to design, analyse and construct control systems for ASML
lithoscanners. We have shown that DSLs, T2M, M2M, and
M2T transformations allow to define an integrated design
environment for analysis and construction which is applied
in a hard real-time industrial environment.

During the development of this framework, several improve-
ments to the current state-of-pratice of model-based engi-
neering have been identified. For instance, to enable a more
modular design of DSLs, such that DSLs can be defined in
terms of several other (smaller) DSLs, explicit interface def-
initions, supported by tools, on metamodels are required to
specify which part of a metamodel can be used by other
metamodels. Currently, one has to explicitly model this
modularity in the DSLs itself. The development of domain
specific languages is a difficult process. It deals with the for-
malization of implicit conventions present within a particu-
lar domain, choosing the correct level of abstraction which
is a trade-off between too domain specific, and too general,
in combination with trying to foresee and incorporate fu-
ture extensions in the domain. The resulting domain lan-

guages differ from software class diagrams. The domain ex-
pert should play an important role in the development of
the domain model in order to ensure that the domain model
‘explains itself’ to its users later on. If the DSL at hand
is strongly typed, there is no out-of-the-box tooling support
to define the type computing. Structural semantics can be
well captured within the class diagrams in combination with
OCL constraints. However, there is no out-of-the-box sup-
port for the definition of (formal) behavioral semantics, in
terms of, for instance SOS rules [15].

8. REFERENCES

[1] Steinberg, D., Budinsky, F., Paternostro, M., Merks,
E.: Eclipse Modeling Framework. Addison-Wesley
(2009)

[2] Object Management Group: Object Constraint
Language, version 2.0; MOF Model to Text
Transformation, Version 1.0;
Query/View/Transformation (QVT), version 1.0.
http://www.omg.org/ (2006-2012)

[3] Kienhuis, B.: Design Space Exploration of
Stream-based Dataflow Architectures: Methods and
Tools. PhD thesis, Delft University of Technology
(1999)

[4] Eclipse: QVT Operational.
http://www.eclipse.org/m2m/ (2012)

[5] Obeo: Acceleo, version 3.0.
http://www.eclipse.org/acceleo/ (2012)

[6] Gronback, R.C.: Eclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit.
Addison-Wesley (2009)

[7] Putten, P.H.A.v.d., Voeten, J.P.M.: Specification of
reactive hardware/software systems - The method
software/hardware engineering. PhD thesis,
Eindhoven University of Technology (1997)

[8] Systems Engineering Group TU/e: CIF toolset.
http://se.wtb.tue.nl/sewiki/cif (2012)

[9] Hendriks, D., Schiffelers, R., Hiifner, M., Sonntag, C.:
A Transformation Framework for the Compositional
Interchange Format for Hybrid Systems. In: Proc.
18th IFAC World Congress. (2011)

[10] Lee, E.A., Messerschmitt, D.G.: Synchronous Data
Flow. In: Proc. of the IEEE, vol. 75. (1987) No.9
1235-1245

[11] Segala, R.: Modeling and verification of randomized
distributed real-time systems. PhD thesis,
Massachusetts Institute of Technology, Massachusetts
(1995)

[12] The MathWorks, Inc: Using Simulink, version 6.
http://www.mathworks.com (2005)

[13] Eker, J., Cervin, A.: A Matlab toolbox for real-time
and control systems co-design. In: Proc. 6th Int.
Conference on Real-Time Computing Systems and
Applications. (1999) 320-327

[14] Hemingway, G., Porter, J., Kottenstette, N.,
vanBuskirk, C., Karsai, G., Sztipanovits, J.:
Automated synthesis of time-triggered
architecture-based truetime models for platform
effects simulation and analysis. In: Rapid System
Prototyping, IEEE (2010) 1-7

[15] Plotkin, G.D.: A structural approach to operational
semantics. J. of Logic and Alg. Progr. 60-61 (2004)

