
Analyzing the Concept of Involving Low End
Devices in a Cooperative Network

Péter Ekler
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Budapest, Hungary
peter.ekler@aut.bme.hu

Hassan Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Budapest, Hungary
hassan.charaf@aut.bme.hu

Abstract—The development of hardware and software of low end
mobile phones and even simple media players will increasingly
allow different type of content to be consumed on them creating
pressure for efficient ways to also access the content. Since
efficient, scalable distribution of multimedia content is a key
strength of peer-to-peer technologies, bringing that technology to
the player devices seems attractive. This way low end devices
would be able to join and cooperate in an existing peer-to-peer
network. The paper introduces a complete J2ME based
BitTorrent solution for mainstream phones, called MobTorrent
which supports both downloading and uploading. We analyze the
key elements of MobTorrent and introduce issues related to the
limited capabilities of low end devices. The performance of the
complete application is evaluated by speed measurements. In
general handheld devices have small batteries, thus the energy
consumption is a key property of applications on low end devices.
The paper also discusses the possibility of implementing
Bluetooth based local cooperation in MobTorrent and the key
factors of how to bring peer-to-peer technology to simple media
player devices.

Key words—BitTorrent; Low end device;, Cooperative networks

I. INTRODUCTION
As the capabilities of handheld devices increase, the range

of applications that they are able to handle grows. An
interesting set of applications for handheld devices are peer-
to-peer (P2P) applications. Listening to music has long been a
favorite use of handheld devices with devices ranging from
Walkman type C-cassette players to modern MP3 players. The
current digital convergence devices such as mobile phones are
also increasingly used as music players. The consumption of
video and other multimedia content besides music on
handheld devices is also increasing.

Since efficient, scalable distribution of multimedia content
is a key strength of P2P technologies, bringing that technology
to the player devices seems attractive. In that way the
multimedia content would be found, accessed, and played with
the same handheld device. Using a PC as an intermediary
would not be needed.

The first experimental steps towards this direction have
already been taken with the implementations of popular
content sharing protocols, Gnutella and BitTorrent, for mobile
phones [1]. The applications, Symella [2] and SymTorrent [3],

are available in source code. Mobile phones are an easy target
platform, since their essence is connectivity which is
increasingly complemented with different kinds of
applications, in our case, with multimedia players and
programs.

However, the available Gnutella and BitTorrent applications
are implemented on Symbian platform, which limits their use
to a subset of mobile devices and especially to the high end
models with a fair number of computation resources available.

In this research, we want to investigate how to bring peer-
to-peer content sharing to low end handheld devices. Our
theoretical target is not only mass market mobile phones but
also other handheld devices. For instance, if a music player
were equipped with wireless access, could it work as a peer in
a content sharing network? What are the challenges of
bringing peer-to-peer content sharing to low end devices?
What are the requirements for the device capabilities?

To answer these questions, we have experimented with
implementing a BitTorrent client called MobTorrent for J2ME
platform (Java Platform, Micro Edition). MobTorrent is a
complete BitTorrent implementation it supports both
downloading and uploading.

Most of the mobile device manufacturers support J2ME
applications on their phones. The first reason for this is that
there are already several popular applications for this platform
which people want to use on their devices. The second cause
is that the platform is very reliable: the signing procedure of
the applications protects the users against unsafe applications.

The rest of the paper is organized as follows. Section 2
describes related work in the area of BitTorrent performance
and existing J2ME peer-to-peer implementations. Section 3
investigates the MobTorrent from the viewpoint of the applied
technology. Section 4 introduces measurements results about
the performance of MobTorrent. Section 5 discusses the
possibility of porting BitTorrent to player devices. Section 6
concludes the paper and proposes issues for further research.

II. RELATED WORK
One of the most popular P2P protocol is the BitTorrent.

Despite its popularity, the actual behavior of these systems
over prolonged periods of time is still poorly understood.
Pouwelse et al. [4] presented a detailed measurement study

over a period of eight months of BitTorrent. They presented
measurement results of the popularity and the availability of
BitTorrent, of its download performance, of the content
lifetime, and of the structure of the community responsible for
verifying uploaded content. The results were that the system is
quite popular, but the number of active users in the system is
strongly influenced by the availability of the central
components. They also found that 90% of the peers
experienced speeds were below 65 kB/sec. From the lifetime
point of view, they showed that only 9,219 out of 53,883 peers
(17 %) have an uptime longer than one hour after they have
finished downloading. For 10 hours this number has decreased
to only 1,649 peers (3.1 %), and for 100 hours to a mere 183
peers (0.34 %).

While it is well-known that BitTorrent is vulnerable to
selfish behavior, Locher et al. [5] demonstrated that even
entire files can be downloaded without reciprocating at all in
BitTorrent. To this end, they presented BitThief, a free-riding
client that never contributes any real data. They showed that
simple tricks suffice in order to achieve high download rates,
even in the absence of seeders (peers who only share the
content). They also illustrated how peers in a swarm react to
various sophisticated attacks.

Wang et al. [6] investigate issues related to the development
of wireless P2P games with J2ME. Their work is mainly
focused on the Bluetooth communication protocol and APIs
but they briefly touch some other issues as well.

JXME [7], the JXTA [8] Java Micro Edition, provides a
JXTA compatible platform on resource constrained devices.
JXTA is a technology to create peer-to-peer applications based
on Java. JXME has been an influential platform that has been
used by a number of other researchers. Nützel and Kubek [9]
discuss the development of a mobile extension to the
HotPotato music distribution system using JXME. Bisignano
et al. [10] have analyzed the use of JXME on handheld
devices in the MANET context. Andersen and Torabi [11]
propose a framework that is able to optimally choose an
implementation matching the needs of an application. They
demonstrate their system with a simple chat application
running on JXME.

In the last two decades enormous efforts have been devoted
to developing wireless communication technologies. Once
affordable only to specific niche markets, these wireless
communications are rapidly becoming everyones mainstream
source of connectivity. In [12], the authors are introducing
different concepts of cognitive and cooperative networks.
Peer-to-peer networks also belong to this category. The
authors are introducing a P2P based information retrieval
system.

A key difference between previous research and our work
is that our main goal is to allow low end mobile phones to join
to a large, already existing, cooperative content distribution
network. It allows us to investigate and measure the abilities of
these devices and estimate what the requirements of this
technology are.

III. J2ME BASED BITTORRENT SOLUTION
J2ME is the platform of low end mobile devices. It is also

available on mass market mobile phones from different
manufacturers. Bringing the BitTorrent peer-to-peer
technology to the mainstream phones is the next step towards
the simpler player devices. In this section, we introduce the
technologies that MobTorrent uses in order to determine the
technological requirements of BitTorrent or other similar type
of peer-to-peer protocols.

J2ME is ideal for this analysis because of its architecture. It
is based on three main elements: configurations, profiles and
optional packages.

(i) Configurations describe the capabilities of the virtual
machine and provide the basic set of libraries for a broad
range of devices. The configuration, targeting resource-
constrained devices such as mobile phones is called
Connected Limited Device Configuration (CLDC).

(ii) For defining a higher-level API, the J2ME platform
specifies profiles on top of the configurations. The
combination of Mobile Information Device Profile (MIDP)
with CLDC is widely used to provide a complete Java
application environment for handheld devices.

(iii) If we want to use other technology specific APIs in our
application, we can import different kinds of optional
packages which can be found in different JSRs [13] (Java
Specification Request).

By introducing the main architectural elements of
MobTorrent we show what JSRs and algorithms it uses.

A. Networking
The essence of BitTorrent is that content (one or more files)

is downloaded in multiple pieces. The different pieces are
downloaded from separate peers (if possible) in parallel which
makes the aggregate download speed much higher than
downloading from a single bandwidth limited peer only.
Downloadable content is described by a torrent file, which
contains the address of the tracker and the hash values of the
content pieces. The tracker maintains a list of peers that are
working on the download (or share) of the same content.
MobTorrent can open and interpret the torrent files. After it
connects and registers to the tracker, which sends back
addresses of several peers that are able to serve the content.
Then MobTorrent sends piece request messages to these peers
which respond by starting to upload the content to us. While a
peer is downloading content it can also upload the already
received pieces to others.

The BitTorrent protocol [14] uses HTTP connections for
communicating with the tracker and TCP connections for the
download and upload procedure from/to the other peers. These
communication protocols are supported in MIDP 2.0 [15]
which supports sockets and also datagram connections.

A previous paper [16] has introduced some limitations from
the network handling point of view of MobTorrent. The
MobTorrent in that case was only able to download, thus, it
was a limited implementation of BitTorrent. It demonstrated

on the popular Nokia S40 platform for low end mobile phones
that there are limitations about how many connections can be
maintained at the same time. This number was 9 for TCP and
HTTP connections together. Experiences in [16] show that
downloading via 9 parallel connections is adequate in many
cases. Section 4 introduces how the upload ability changes
these numbers.

This shows that P2P applications have different platform
requirements from other types of applications and that they
raise problems that are not experienced by other ones.

B. File handling
MobTorrent needs to store the downloaded content on the

file system of the device. Nowadays most of the mainstream
mobile phones and even simple media players have enough
memory capacity for music and even for large multimedia
files. The J2ME has the ability to handle files with the File
Connection Optional Package (FCOP). It is one of two
optional packages defined by JSR-75 [13] which is supported
by most phones.

File handling in J2ME differs from general file handling
solutions. The main difference is that, on J2ME, we can access
the file only via input and output streams which are slower
than the other file handling implementations.

File handling is one of the reasons why the performance of
MobTorrent is slower if we allow both download and upload.
The reason for that is the following. If we allow both
directions, then the application uses the file system more
often, because it must also read the data from it before
uploading a piece.

C. Processing power
While we are developing for simple mobile devices, we also

have to consider that they have limited processing power.
BitTorrent protocol uses the Secure Hash Algorithm version
1.0 (SHA1) for checking the consistency of the downloaded
content. This algorithm requires a lot of processing time on
J2ME. When the application has downloaded a piece it has to
calculate the hash value of the content and compare it to the
value in the original torrent file. This mechanism allows us to
find and avoid the faulty or badly downloaded pieces.
Experiences shows that one piece out of 100 can be bad which
means without hash checking the probability of error is quite
high even for medium-sized content.

SHA1 algorithm is implemented in the Security and Trust
Services API (SATSA), which can be found in the JSR-177
[13], but this JSR is not widely available on the simple
devices. Thus, we implemented our own SHA1 algorithm to
avoid using this JSR. According to our measurements on
Nokia N91 devices the processing time of SHA1 calculation
of one piece is the same in our implementation and the one in
JSR-177.

Boland and Fisher [17] introduced and compared different
hash algorithms, the result was that the SHA-1 is more
complex and slower than the other algorithms, but presents a

more robust solution than the other hashing algorithms
considered. Changing the SHA-1 in our solution to other hash
checking algorithm is not possible, because in that way we
would lose the compatibility with the existing BitTorrent
community.

In BitTorrent, we download the content in separate pieces.
A general piece size is 64 KB and a piece is downloaded in
separate blocks; in this case the block size is 16 KB. In
SymTorrent, after the whole piece is downloaded it reads it
out from the file system and does the hash calculation for it.
This solution in MobTorrent was slow. Investigating this
issue, we measured the speed of reading a 64KB size of piece
from different position of a file and calculating its hash value.

TABLE I. PIECE READ AND HASH CALCULATION PERFORMANCE

 Begin Middle End

millisecond Read Hash Read Hash Read Hash

file1 2 MB 1097 978 4398 978 7103 978

file2 7 MB 1109 978 10847 978 20210 978

file3 10 MB 1150 978 14478 978 27214 978

Table 1 illustrates how much time it takes to read the piece
from a file and calculate the hash value, the values are in
milliseconds. The measurements were made on a Nokia N93
device but the rates were the same on other devices, thus, they
are not presented here. We chose file sizes which are typical
on mobile devices like for mp3 and other multimedia files. We
also measured the piece reading from different position of the
file. In Table 1, we can see that not the hash calculation itself
is the bottleneck but reading the piece from the file system.
The reason for that is the file handling solution on J2ME. We
can read from a file only via an InputStream and we are not
allowed to seek in the file, we can only read it until we reach
the right position.

In order to avoid this performance penalty, we calculate the
hash value incrementally when a block of a piece arrives, thus,
we do not have to read it from the file system after the whole
piece arrived. To achieve this, we must query the blocks of a
piece in the right order, which is feasible, because if a peer
reports us that it has the whole piece, then we can query them
in the right order.

D. User Interface
Using the limited screen space of the mobile device

efficiently is important. Since MobTorrent performs most of
its activities without user interaction the requirements for the
user interface are not very severe. The screenshots in Figure 1
introduces the user interface of the application.

The screenshots were made on the phone. They illustrate
the list of the torrents and the download state of a selected
torrent.

Figure 1. MobTorrent screenshots

IV. MESUREMENTS AND RESULTS
The download performance of MobTorrent was already

introduced in a previous paper from us [16] but in that version
upload functionality was not implemented. The new version of
MobTorrent is capable of both downloading and uploading.

The upload functionality exhibited unexpected performance
deceleration. The reason for that is the previously introduced
file handling problem of the J2ME, which we could avoid in
the download but not in the upload. During the upload other
peers request pieces from our client, which pieces we have to
read even from the end of the file which is very slow, as it was
shown before thus it decreases the performance of the whole
application.

TABLE II. DOWNLOAD SPEED (KB/SEC) WITH UPLOAD FUNCTIONALITY

 1 peer 2 peers 6 peers

MobTorrent 65 82 95

MobTorrent Up 18 20 21

Table 2 introduces how the download speed decreased

when we allowed the upload functionality in MobTorrent.
These measurements were made on a Nokia N93 device on
WLAN network but the rates on other devices (Nokia 6280,
Nokia 6230i) and on 3G network were the same.

MobTorrent Up in the table means that in that case one peer
were downloading from our client, while we were
downloading a 2 MB large file. The numbers in that row
illustrate our download speed. The upload speed which the
MobTorrent was able to provide was 17 KB/sec. When more
peers were downloading from our device the upload speed did
not increased even if they were served in separate threads,
because the bottleneck was reading the data from the file
system.

In general we can say that when other peers are
downloading from us then our download speed decreases and
the bottleneck is not the previously mentioned socket problem,
that the system can maintain only 9 connections at the same
time, but the file handling of the J2ME.

However, if there are no incoming connections, the
previously introduced download performance is reasonably
good, and, with the upload functionality, MobTorrent is able to
share contents, thus it can become a full member of the
community.

V. DEPLOYING BITTORRENT TO PLAYER DEVICES
By bringing the BitTorrent technology to the J2ME

platform, we illustrated that it is possible to involve low end
devices in a peer-to-peer cooperative network. If we analyze
the architectural elements of MobTorrent, we can determine
what technologies BitTorrent needs, which is important if we
examine the possibility of bringing the technology to simple
media player devices. The relevant technologies are the
following:

(i) Network support: the target device has to be able to use a
certain network connection in order to communicate with
other members of the community. WLAN network support is
becoming very popular in mobile devices but they are still not
relevant in simple player devices. However there are for
example digital picture frames which support WLAN
connections.

(ii) File system: while BitTorrent is a content sharing
system, it is important for the player device to handle the file
system in an efficient way. We demonstrated with
measurements that how slow file handling can decrease the
performance of the application.

(iii) Multithreading: in a peer-to-peer protocol, the system
must maintain several connections at the same time, thus it is
necessary to support somehow multiple threads.

(iv) Processing power: BitTorrent uses SHA-1 algorithm
and it also does other calculations, thus it is important for the
player device to have a reasonably good processing power.

(v) User interface: if we want to bring the BitTorrent
technology to player devices our goal is to hide from the user
that a complex peer-to-peer protocol runs in the background
but still the application needs a simple user interface for
example for searching for the content to download, browsing
downloadable contents, checking the status, etc.

While we discussed network connections, we did not
mention the Bluetooth, however, it is very popular and widely
available on handheld devices. There is already an
experimental Bluetooth-based implementation of BitTorrent
based on Symbian platform [3]. SymTorrent with local
cooperation is an experimental project which aims at
achieving smaller energy consumption by downloading over
Bluetooth if the phones are in close proximity to each other.

The following equations illustrate a high level calculation,
about how we can estimate the performance (speed of the
content transfer) of a torrent client on low end devices (P),
considering the previously mentioned factors and also the
possibility of Bluetooth support (blueP). The formulas are
based on our experiences according to MobTorrent but it is
worth to consider it in connection with other type of low end
devices such as simple media players. It is hard to measure the
concrete values in the equations, but our goal with it is more to
illustrate each of the factors and their roles.

blue
mcfs

poss P
DDDD

PP +
+++

∗= 1
 (1)

mcf
possBlueblue DDD

PP
++

∗= 1 (2)

possP is the theoretical maximum performance of the

application, which depends on the hardware of the specific
device (bandwidth, processor, etc.). possBlueP is the theoretical

maximum performance which could be achieved with the
Bluetooth based local cooperation. sD is the factor how the
previously mentioned socket limitation decreases the
performance, fD is the decrease factor of the file handling on

J2ME, cD means how the processing power of the device

slows down performance and mD is the decrease factor which
derives from the multi threading and multiple peer handling
which is key property of peer-to-peer applications.

Bringing the Bluetooth based local cooperation on low end
devices seems attractive, because those devices have even
smaller battery, and the energy consumption is a key property
of the applications. J2ME supports Bluetooth connections via
the JSR-82 [13] thus implementing local cooperation is the
next step for increasing the efficiency of MobTorrent.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have introduced MobTorrent, the first full-

featured and complete BitTorrent client for J2ME platform. It
supports downloading multiple torrent files at the same time,
is capable of both downloading and uploading. This way low
end mobile devices are able to become real members of the
BitTorrent content distribution community.

Performance measurements show that using low end mobile
devices for peer-to-peer content sharing with existing
communities is feasible. Measurements also illustrate how the
upload functionality decreases the performance of the
application and how the file handling of J2ME is responsible
for this deceleration.

In this paper, we have also analyzed the possibility of
bringing BitTorrent to even simple media player devices. By
analyzing the MobTorrent, we can say that the minimal
requirement of a BitTorrent type of peer-to-peer application is
that the platform of the device should support network
handling, file handling methods, multithreading, reasonable
processing power and minimal user interface. From the J2ME
point of view, these requirements can be found in the MIDP
2.0 and in JSR-75.

One of the advantages of having BitTorrent on simple
mobile phones is that in that way we do not need PC for
downloading and we have the possibility of the on-the-move
download. Another advantage is that it is very comfortable to
download directly to the mobile phone if the user consumes
the content on the device. An interesting detail is that
downloading with a PC creates noise because of the cooling
system and disk usage, while with a mobile phone the content
distribution is completely silent.

In this paper, we have not analyzed mobile devices from the
energy consumption point of view, however, in the future this
will be important if the devices use the network more
intensively. Future work will be to implement the Bluetooth-
based local cooperation on J2ME platform. Thus, we could
analyze the energy consumption of the devices deeply.

ACKNOWLEDGMENT
We thank Szabolcs Fodor from Nokia Siemens Networks

for supporting the MobTorrent research project.

REFERENCES
[1] I. Kelényi, G. Csúcs, B. Forstner, H. Charaf, “Peer-to-Peer File Sharing

for Mobile Devices”, In Mobile Phone Programming: Application to
Wireless Networks; F. Fitzek, F. Reichert Eds.; ISBN: 978-1-4020-5968-
1. Springer, 2007

[2] B. Molnár, B. Forstner, I. Kelényi, “Symella 1.40”, Budapest University
of Technology and Economics. Dec. 18, 2007. [Online]. Available:
http://symella.aut.bme.hu

[3] I. Kelényi, P. Ekler, Zs. Pszota, “SymTorrent 1.30”, Budapest University
of Technology and Economics. Dec. 18, 2007. [Online]. Available:
http://symtorrent.aut.bme.hu

[4] J. Pouwelse, P. Garbacki, D. Epema, H. Sips, “The BitTorrent p2p file-
sharing system: Measurements and analysis”, IPTPS'05. 4th Int.
Workshop on Peer-To-Peer Systems 2006, Ithaca, New York, USA

[5] T. Locher, P. Moor, S. Schmid, R. Wattenhofer, “Free Riding in
BitTorrent is Cheap”, In HotNets, 2006

[6] A. Inge Wang, M. Sars Norum, C. Wolf Lund, "Issues related to
Development of Wireless Peer-to-Peer Games in J2ME",
Telecommunications 2006. AICT-ICIW '06. Int. Conf. on Internet and
Web Applications and Services/Advanced Int. Conf. on, vol., no., 19-25
Feb. 2006, pp. 115-115

[7] JXTA Java Micro Edition overview, Dec. 18, 2007. [Online]. Available:
https://jxta-jxme.dev.java.net/

[8] JXTA description, Dec. 27, 2007. [Online]. Available:
https://jxta.dev.java.net/

[9] J. Nutzel, M. Kubek, "A Mobile Peer-to-Peer Application for
Distributed Recommendation and Re-Sale of Music", AXMEDIS '06.
Automated Production of Cross Media Content for Multi-Channel
Distribution, 2006. Second Int. Conf. on, vol., no., Dec. 2006, pp.93-98

[10] M. Bisignano, G. Di Modica, O. Tomarchio, “A JXTA compliant
framework for mobile handheld devices in ad-hoc networks”, Computers
and Communications, 2005. ISCC 2005. Proceedings. 10th IEEE
Symposium on, vol., no., June 2005, pp. 582-587, 27-30

[11] A. M. Andersen, T. Torabi, "A holistic framework for mobile
environments", Software Engineering Conf., 2006. Australian, vol., no.,
April 2006, pp. 7 pp.-, 18-21

[12] B. Forstner, G. Csúcs, I. Kelényi, H. Charaf, “Peer-to-Peer Information
Retrieval Based on Fields of Interest”, In Cognitive Wireless Networks;
F. H. P. Fitzek, M. D. Katz; ISBN: 978-1-4020-5978-0. Springer, 2007

[13] Java Specification Request overview, Dec. 18, 2007. [Online].
Available: http://www.jcp.org/en/jsr/overview

[14] BitTorrent specification, Dec. 18, 2007. [Online]. Available:
http://wiki.theory.org/BitTorrentSpecification

[15] Mobile Information Device Profile 2 description, Dec. 18, 2007.
[Online]. Available:
http://developers.sun.com/mobility/midp/articles/midp2network

[16] P. Ekler, J. K. Nurminen, A. J. Kiss “Experiences of implementing
BitTorrent on Java ME platform”, CCNC’08. 1st IEEE International
Peer-to-Peer for Handheld Devices Workshop 2008, Las Vegas, USA,
to be published

[17] Boland, T. and Fisher, G. (2000) "Selection Of Hashing Algorithms".
[Online]. Available: http://www.nsrl.nist.gov/documents/hash-
selection.doc

